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In the last decades, researchers have proposed a large number of theoretical models of timing. These
models make different assumptions concerning how animals learn to time events and how such learning
is represented in memory. However, few studies have examined these different assumptions either
empirically or conceptually. For knowledge to accumulate, variation in theoretical models must be
accompanied by selection of models and model ideas. To that end, we review two timing models, Scalar
Expectancy Theory (SET), the dominant model in the field, and the Learning-to-Time (LeT) model,
one of the few models dealing explicitly with learning. In the first part of this article, we describe how
each model works in prototypical concurrent and retrospective timing tasks, identify their structural
similarities, and classify their differences concerning temporal learning and memory. In the second
part, we review a series of studies that examined these differences and conclude that both the memory
structure postulated by SET and the state dynamics postulated by LeT are probably incorrect. In the
third part, we propose a hybrid model that may improve on its parents. The hybrid model accounts for
the typical findings in fixed-interval schedules, the peak procedure, mixed fixed interval schedules,
simple and double temporal bisection, and temporal generalization tasks. In the fourth and last part, we
identify seven challenges that any timing model must meet.
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temporal discrimination, timing

“Stated more generally the problem is how
time as a dimension of nature enters into
discriminative behavior and hence into human
knowledge.”

(B. F. Skinner 1938, p. 263)

The capacity to adjust behavior to temporal
regularities in the environment in the range of
seconds to minutes is called interval timing, or
timing for short. This capacity is expressed in a
variety of ways such as in anticipating an
important event once a specific interval of
time has elapsed, judging which of two events
lasted longer, performing an action for a given
duration, or choosing which of two cues
signals a shorter delay to a reward. In each
case, timing is said to take place because
behavior is a function of one or more arbitrary
intervals between events or durations of
events. To say that an animal or person is
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timing is not to say simply that its behavior
occurs in time, but that the best predictor of its
behavior is an interval of time.

After several decades of research, scientists
still debate the properties that characterize
timing (e.g., Lejeune & Wearden, 2006;
Staddon & Cerutti, 2003; Zeiler, 1998; Zeiler
& Powell, 1994), the processes and neural
mechanisms that underlie it (Buhusi & Meck,
2005; Ivry & Spencer, 2004; Matell & Meck,
2000; Meck, 1996), how the capacity is
disrupted by pharmacological agents and
disease (e.g., Cevik, 2003; Meck, 1983;
McClure, Saulsgiver, & Wynne, 2005), and
which quantitative models and theories best
describe it (e.g., Lejeune, Richelle, & Wear-
den, 2006; Staddon & Higa, 1999, 2006).
Although much remains to be discovered, it
is also the case that during the last decades
psychologists have made substantial progress
in the study of timing. First, they have
developed a rich set of procedures to study
the different expressions of the timing capac-
ity (e.g., Church, 1984, 2004; Gallistel, 1990;
Richelle & Lejeune, 1980; Roberts, 1998).
Some of these procedures, described in
greater detail below, include the fixed-interval
schedule and the peak procedure to study
concurrent timing (i.e., the timing of ongoing
events), or the temporal generalization and
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temporal bisection procedures to study retro-
spective timing (i.e., the timing of elapsed
events). Second, they have collected a large
amount of orderly data on timing and from
them advanced a few empirical generaliza-
tions. One of them, perhaps the most impor-
tant, is the scalar property, the fact that timing
is relative to the standard being timed
(Church, 2003; Gibbon, 1977, 1991; Lejeune
& Wearden, 2006). To illustrate, timing
performances R;(t) and Ro(t) on intervals 30-
and 90-s long, respectively, are scale transforms
of each other—Ry(t) is proportional to R, (t/3).
Third, they have proposed a significant num-
ber of models and theories of timing. These
models come from different theoretical per-
spectives (behavioral, cognitive, computation-
al, and neurobiological), propose different
processes and mechanisms, stress different
subsets of research findings, and have differ-
ent depths of analysis. A nonexhaustive list
includes the Scalar Expectancy Theory (Gib-
bon, 1991; Gibbon, Church, & Meck, 1984),
the Behavioral theory of Timing (Killeen &
Fetterman, 1988), the Spectral Model (Gross-
berg & Schmajuk, 1989), the Diffusion model
(Staddon & Higa, 1991), the Multiple Oscilla-
tor model (Church & Broadbent, 1990), the
Learning-to-Time model (Machado, 1997),
the Multiple Time Scales model (Staddon &
Higa, 1999), the Packet Theory (Kirkpatrick,
2002) and its descendant, the Modular Theory
of Learning (Guilhardi, Yi, & Church, 2007),
the Active Time Model (Dragoi, Staddon,
Palmer, & Buhusi, 2003), and the list could
continue with the neurobiological models.
And fourth, they have started the thorny
process of comparing and contrasting these
models with each other and with data (e.g.,
Bizo, Chu, Sanabria, & Killeen, 2006; Fetter-
man & Killeen, 1995; Leak & Gibbon, 1995;
Lejeune et al., 2006; Staddon & Higa, 1999; Yi,
2007). If doing experiments (point 2 above)
explores the empirical space of timing, and
proposing models (point 3 above) explores
the theoretical space of timing, comparing and
contrasting models with data coordinates the
two spaces in an attempt to design more
informative experiments and build more
powerful theories.

The present article fits in this last category,
for it reviews a series of studies that compared
and contrasted the Scalar Expectancy Theory
(SET), the leading model in the field of
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animal and human timing, with the Learn-
ing-to-Time (LeT) model, a derivative of Kil-
leen and Fetterman’s (1988) behavioral theory
of timing. As we shall see, these two models
make different assumptions about the process-
es underlying timing in general and what
animals learn in timing tasks in particular. For
this reason, examining the two models jointly
has proved to be a fruitful exercise because it
has led us to identify not only serious problems
with each model but also important but
unknown properties of timing and temporal
memory. It has also helped to clarify problems
that future research should solve.

Other studies have designed experiments
specifically to contrast timing models, but
most of them have not addressed issues of
learning, or explored the models’ distinct
conceptions of learning. For example, one set
of these studies contrasted SET and the
behavioral theory of timing on the issue of
whether the rate of a hypothetical internal
clock is influenced by global and local
reinforcement rates and how that influence
might account for certain aspects of timing
performance related to the scalar property
(Fetterman & Killeen, 1991, 1995; Leak &
Gibbon, 1995; Morgan, Killeen, & Fetterman,
1993; see also Bizo & White, 1994a, 1994b;
1995a, 1995b, 1997). By comparison, the
issues in the present article have been
examined less. They are, namely, how animals
learn to time, how this learning affects their
temporal memories, how temporal memories
are accessed and their contents retrieved, and
which experimental findings may help re-
searchers choose among distinct conceptual-
izations of learning to time. But even the
domain of learning to time is too broad to be
covered in one single article. We further
narrow our focus to issues related to memory,
the precipitate of learning. We pay special
attention to the contents of memory, the
(often tacit) rules to form new memories,
access them, and retrieve their contents. We
will not discuss other important matters such
as the nature of time markers (e.g., Staddon
& Higa, 1999) or the timing of multiple
signals (Meck & Church, 1984). And, for the
most part, we restrict our remarks to timing
in animals.

The article is divided into four parts. In the
first part, we describe the structure of each
model and how they work in two prototypical
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tasks, one of concurrent timing, the fixed-
interval schedule, and the other of retrospec-
tive timing, the temporal bisection task'.
Describing how the models work in these
simple tasks will reveal their similarities and
differences. In the second part, we summarize
experiments that exploited some of the
differences between the learning assumptions
of the two models, and from their results we
draw some implications for our understanding
of timing. In the third part, we propose a new
model of timing that integrates features of SET
and LeT and show how the hybrid model
overcomes some of the shortcomings of its two
parents. In the fourth and final part, we
identify some of the challenges that any model
of timing must meet and thereby hope to pave
the way for a better account of timing.

I. TWO MODELS OF TIMING, SET AND LET

To introduce the two models, we consider
the simplest time-based task, the fixed-interval
(FI) reinforcement schedule. In FI T-s, a
reinforcer becomes available T s after the trial
onset. Responses emitted at times t = T are
recorded but not reinforced, whereas the first
response emitted at t > T earns the reinforcer
and, usually, starts a new trial. Of interest is
how the animal distributes its responses during
the trial. Typically, at the steady state, the
animal pauses or responds at a low rate during
the first half to two thirds of the trial and then
it either responds at a constant but significant-
ly higher rate until the end of the trial,
yielding the break-and-run pattern (Schnei-
der, 1969), or it accelerates until the end of
the trial, yielding the FI scallop (Dews, 1978).
Averaged across trials, response rate follows a
smooth, monotonically increasing, sigmoid
curve. Moreover, when the same animal is
exposed to different FI schedules, the average
rate curves superimpose when plotted with
normalized axes (Dews, 1970). Superimposi-
tion means that relative response rate at time t
into the trial is a function of the ratio t/T. How
do SET and LeT explain this performance?

'We have excluded prospective timing tasks (e.g.,
Gibbon & Church, 1981) because it is not yet clear what
a timing model must account for in these tasks (e.g.,
Preston, 1994; Cerutti & Staddon, 2004; Machado &
Vasconcelos, 2006). We have also excluded temporal
differentiation tasks (e.g., Platt, 1979) because the LeT
model has not been applied to them.
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SET in FI Schedules

SET is an elegant information-processing
model developed by John Gibbon, Russell
Church, and their collaborators (for summa-
ries, see Church, 2003; Gallistel, 1990; Gibbon
1991). In its most basic form, the model
postulates an internal clock composed by the
three devices displayed in the top left panel of
Figure 1, a pacemaker—accumulator unit, a
memory, and a comparator. The pacemaker
generates pulses at a high and variable rate
(A). The accumulator, which is reset to 0 at the
beginning of each trial, adds the pacemaker
pulses throughout the trial. When the rein-
forcer is delivered, the value in the accumula-
tor is multiplied by a random factor (k*) and
saved in a long-term memory store. Because
the pacemaker rate A and the memory factor
k* are random variables (typically Gaussian),
the value in the accumulator at the end of an
interval and the value stored in memory also
will be variable, even when the timed interval
has constant duration. More important, both
random variables induce scalar variability in
the subject’s representation of time, meaning
that both change multiplicatively the duration

of the physical interval®.

Because each trial adds one value to the
memory store, after a few trials the memory
will contain a distribution of values represent-
ing the reinforcement times. According to
SET, to decide whether or not to respond, the
animal extracts a sample from its memory at
trial onset and then compares the sample with
the current value in the accumulator. The
memory value, M, represents the reinforce-
ment time; the accumulator value, x,, repre-
sents elapsed time during the trial. When the
ratio between the accumulator value and the
memory value crosses a threshold, ®, respond-
ing changes from a low (or possibly zero) rate
to a high rate. The threshold parameter ® also
is a random variable.

At the steady state, SET predicts on each
trial a break-and-run response pattern, repre-
sented graphically by a step function. The
moment of the break (graphically, the time
when the step occurs) is a random variable

2If X is a Gaussian variable with mean p and standard
deviation o, then the value in the accumulator at the end
of an interval of length t will be a Gaussian variable with
mean pXt and standard deviation oXt. The effect of k* is
similar.
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Fig. 1. The left panels show the structure of SET. A
pacemaker generates pulses which are added in an
accumulator and stored at the end of the to-be-timed
interval in one or more long-term memories. To decide
when to respond, the animal compares the number
currently in the accumulator with samples extracted from
the memories. In FI schedules (top left) only one memory
is formed; in the bisection procedure (bottom left) two
memories are formed. The right panels show the structure
of LeT. After a time marker, a set of states (top circles) is
activated in series. The states may be coupled to various
degrees (associative links) with one or more operant
responses (bottom circles). The strength of each response
is determined by the dot product between the vectors of
state activation and coupling. In FI schedules (top right)
only one vector of couplings is formed; in the bisection
procedure (bottom right) two vectors are formed.

with mean equal to a constant proportion of
the FI and standard deviation proportional to
the mean. The latter statement expresses
Weber’s law in the time domain. Averaging
the individual trial step functions yields the
session response rate curve with its typical
sigmoid shape. SET also predicts that the
average rate curves produced by the same
animal on different FI schedules superimpose
when plotted in relative time.

LeT in FI Schedules

Like its ancestor, the behavioral theory of
timing (Killeen, 1991; Killeen & Fetterman,
1988), LeT postulates three elements, a series
of states, a vector of associative links connecting
the states to the operant response, and the
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operant response itself (see the top right panel
of Figure 1; Machado 1997). The states embody
the concepts of elicited, induced, adjunctive,
interim, and terminal classes of behavior (Falk,
1977; Staddon, 1977; Staddon & Simmelhag,
1971; Timberlake & Lucas, 1985) and accord-
ing to LeT they underlie the temporal organi-
zation of behavior. At present, we do not know
how precisely the states relate to measurable
behavior or what their neural basis is; they
remain intervening variables (for further dis-
cussion of the role of the states in timing and
their connection with mediating behaviors, see
Fetterman, Killeen, & Hall, 1998; Killeen &
Fetterman, 1988; Matthews & Lerer, 1987;
Richelle & Lejeune, 1980).

The states are aroused or activated serially.
Thus, when the trial begins only the first state
is active, but, as time elapses, the activation of
each state spreads with rate A to the next state.
Each state (n = 1, 2,...) is coupled with the
operant response and the degree of the
coupling, represented by variable W(n),
changes in real time, decreasing to 0 at rate
o during extinction, and increasing to 1 at rate
B during reinforcement. Thus states that are
strongly active when food is unavailable lose
their coupling to, and eventually may not
support, the operant response, whereas states
strongly active when food is available increase
their coupling and may therefore sustain the
response. Finally, the strength of the operant
response is obtained by adding the cueing or
discriminative function of all states, that is,
their associative links, each multiplied by the
degree of activation of the corresponding
state. States that are both strongly active and
strongly associated with the operant response
exert more control over that response than
less active or conditioned states”.

According to LeT, in the FI schedule the
couplings between the early states and the
operant response decrease because food is not
available when these states are maximally
active, but the couplings between the later
states and the operant response increase
because later states are the most active when
food occurs. At the steady state, as successive

*Whereas the Behavioral theory of Timing assumes that
only one state is active at any time, in LeT, at t > 0, all
states are active albeit in different degrees. The function
relating state number, n, to degree of activation at time t is
equal to BeT’s probability function that state n is active at
time t (see Machado, 1997).
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states become active during the trial, their
stronger couplings sustain increasing response
rates. To predict superimposition of the rate
curves for different FI schedules, LeT further
assumes that parameter A (i.e., how fast the
activation spreads across states) and the ratio
of the learning parameters, o/f, are both
inversely proportional to T. This assumption
means that as the FI increases (and overall
reinforcement rate decreases), the activation
spreads more slowly across the states and
extinction becomes relatively less effective
than reinforcement, a sort of partial reinforce-
ment extinction effect.

We have described how SET and LeT handle
the FI schedule, the prototypical concurrent
timing task. Next, we describe how they handle
temporal bisection, the prototypical retrospec-
tive timing task. Then we will have enough
information about each model to identify their
similarities and differences.

A temporal bisection task is a conditional
discrimination task in which two sample
stimuli differing only in duration are mapped
to two comparison stimuli. A pigeon sees a
center key lit for either 1 s or for 4 s and then
chooses between two side keys, one red and
the other green. Choices of Red are rewarded
after 1-s samples and choices of Green are
rewarded after 4-s samples. After the pigeon
has learned to discriminate the two samples,
stimulus generalization is examined by intro-
ducing samples with intermediate durations
and measuring the subject’s preference for
one of the keys, say, Red. The psychometric
function relating the proportion of Red
choices to sample duration t, P(Redlt), has
three features (Catania, 1970; Church &
Deluty, 1977; Fetterman & Killeen, 1991;
Killeen & Fetterman, 1988; Machado, 1997;
Morgan, Killeen, & Fetterman, 1993; Platt &
Davis, 1983; Stubbs, 1968). First, as t increases,
P(Redlt) decreases monotonically and in a
sigmoid way from about 1 to about 0. Second,
the point of subjective equality, or PSE, is close
to the geometric mean of the two training
stimuli (i.e., the square root of their product).
In the example at hand, P(Redlt) = 0.5 when t
= 2 s. Third, individual subject psychometric
functions obtained with samples holding the
same ratio, for example, ‘1 vs. 47 and ‘4 vs.
16, generally are scale transforms. This
means that if the test durations from the ‘4
vs.16”’ discrimination are divided by 4, bring-

427

ing them into the same range as the “‘1 vs. 4”
test durations, then the two psychometric
functions will superimpose. Superimposition
reveals Weber’s law for timing in the sense that
equal ratios yield equal discriminabilities. How
do SET and LeT explain this performance?

SET in the Temporal Bisection Task

The extension of SET to the bisection task
requires one additional memory store and a
more complex decision rule (see the bottom left
panel of Figure 1; Gibbon, 1981, 1991; also
Church, 2003; Gallistel, 1990). Specifically, in
the ““1 vs. 4 bisection task, there will be two
memories, one containing the numbers that are
in the accumulator when a choice of Red is
rewarded and another containing the numbers
that are in the accumulator when a choice of
Green is rewarded. We identify the two memory
stores by Mreq and Mg een to stress the fact that
they are indexed by the choice alternatives.
Because the pacemaker speed A and the
memory factor k* are random variables, the
values stored in each memory will vary across
trials. At the steady state, each memory will
contain a distribution of values whose mean
represents the corresponding sample duration,
and whose standard deviation represents the
uncertainty associated with the sample duration
due to the noise inherent in the timing process.

According to SET, after a sample with
duration t the pigeon’s choice will depend
on three numbers, x,, the number of pulses in
the accumulator at the end of the sample, Xg,
a number extracted from Mgeq and represent-
ing the short stimulus, and X, a number
extracted from Mg,een and representing the
long stimulus. If (x,/Xg) < (XL/X), then the
pigeon is more likely to choose the Red or
“Short” response, but if (x,/Xg) > (XL/X,),
then the pigeon is more likely to choose the
Green or ‘“Long’ response. SET predicts
indifference when (x./Xg) = (XL/x,), which
is equivalent to x, = \s‘/(XS X X1), the geometric
mean of the (subjective) training durations.
SET also predicts sigmoid-shaped psychomet-
ric functions and superimposition of functions
obtained with samples holding the same ratio
(Gibbon, 1981; Church, 2003)

LeT in the Temporal Bisection Task

The model’s extension to the bisection task
requires one extra vector of associative links
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Table 1

Similarities and differences between SET and LeT.

Scalar Expectancy Theory (SET)

Learning-to-Time (LeT) model

Parallel architecture

Pacemaker-accumulator unit

Pacemaker emits pulses at rate A.

The accumulator is reset to 0 at trial onset.
The accumulator adds pulses.

The number of pulses in the accumulator
represents elapsed time.

oo =

Memory stores
1. Temporal memories are concentrated.
2. Each store represents important time moments,
but not the reinforcement rate at those moments.
3. Temporal memories are indexed by situational

elements, not by the accumulator; hence, not by time.

4. Temporal memories are context independent.

Serial architecture

Cascade of states
1. States are activated at rate A.
2. The first state is activated at trial onset.
3. States are activated serially.
4. The most active state represents elapsed time.

Vectors of associative links
1. Temporal memories are distributed.
2. Each vector represents important time moments
and the reinforcement rate at those moments.
3. Temporal memories are indexed directly by the
states and therefore indirectly by time.
4. Temporal memories are context dependent.

and a more complex decision rule (see bottom
right panel of Figure 1; Machado, 1997). The
states become active at sample onset, the time
marker, and each state is now coupled with two
responses. The strength of the link connecting
state n with response r, W;(n), changes only
after the animal chooses. If the choice response
is reinforced, the links between the states and
that response increase, whereas the links be-
tween the states and the other response
decrease, always in proportion to each state’s
activation. Conversely, if the choice response is
extinguished, the links between the states and
that response decrease, whereas the links
between the states and the other response
increase. In other words, the model assumes
that, in bisection tasks, when the link between a
state and one response changes, the link
between the same state and the other response
also changes, albeit in the opposite direction.
Hence, the model’s learning rule implements a
strong form of response competiti0n4.

On each trial, choice depends on which
states are most active at the end of the sample
and on the strength of the links between those
states and the two responses. To illustrate, in a
“l vs. 47 task, after the 1-s sample the initial
states are the most active and because of the
reinforcement contingencies their link with
Red will be strong whereas their link with

*Some indirect evidence supports the assumption: With
training, pigeons take fewer trials to correct a mistake.
Early in training, they may take 3 or more trials on the
average before switching from the incorrect (i.e., unrein-
forced) choice to the correct choice; later in training,
typically they switch on the next trial.

Green will be weak—hence the preference for
Red after short samples. However, after the 4-s
samples, later states will be the most active and
because of the reinforcement contingencies
their link with Red will be weak whereas their
link with Green will be strong—hence the
preference for Green after the long samples.
LeT predicts that preference for Red decreases
as sample duration ranges from 1 to 4s.
Moreover, it also predicts (see Machado,
1997) a PSE close to, but slightly greater than,
the geometric mean of the training stimuli
and, when A is proportional to the overall
reinforcement rate during the trials, that
psychometric functions obtained with samples
holding the same ratio will superimpose when
plotted on a common axis.

Similarities and Differences between SET and LeT

To analyze and test models by experiment,
we need to understand first their similarities
and differences. To that end, it is useful to
compare the models’ corresponding struc-
tures. Table 1 summarizes the information.
The pacemaker—-accumulator unit in SET
corresponds to the serial organization of states
in LeT: As the pacemaker emits pulses at rate A
(SET), the activation spreads across states at
rate A (LeT); at the beginning of each trial, as
the accumulator is reset (SET), the first state
in the series is aroused (LeT); during the trial,
as the accumulator adds pulses (SET), succes-
sive states along the series become the most
active states (LeT). And as the current number
in the accumulator represents elapsed time
(SET), the currently most active state also
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represents elapsed time (LeT). Furthermore,
the memory store in SET corresponds to the
vector of associative links in LeT. Both
represent the subject’s learning history, one
as a distribution of subjective times of rein-
forcement (SET), the other as a vector of links
with different strengths (LeT).

Despite the structural similarities between
the two models, and the fact that they often
predict similar outcomes, the models differ in
how they conceptualize what animals learn in
timing tasks. To exploit these differences
empirically and conceptually, we classify them
in four types. These types are interrelated, and
may be seen as different expressions of the
same face, but because each focuses on a
slightly different issue related to temporal
learning and memory, we present them
separately (see Table 1).

Concentrated (SET) vs. distributed (LeT) memory.
Perhaps the most obvious difference between
the two models is that whereas in SET memory
is concentrated in stores or bins (e.g., Mged
and Mgieen In the bisection task described
above), in LeT it is distributed across links.
Moreover, in SET the memory bins have no
internal structure. Their contents are like
numbered balls mixed in an urn, with the
numbers representing subjective time mo-
ments. Regardless of when the memory is
sampled, each ball has the same probability of
being selected®. In LeT, memories are distrib-
uted among links that couple the states to the
operant response. The states structure the
memory. Metaphorically speaking, memory
sampling takes place one link at a time —
when the first state is the most active, the first
link is sampled and may be expressed in
behavior; when the second state is the most
active, the second link is sampled, and so on.

Retrieval:  time independent (SET) vs. time
dependent (LeT). As a consequence of the
previous point, the role of time in memory
retrieval also differs. In SET, memory receives
numbers from the accumulator, but otherwise
the two structures are not related. In particu-
lar, accessing the memory and retrieving its
contents does not depend on the contents of
the accumulator. Because the accumulator
represents elapsed time, we conclude that
memory access and retrieval is time indepen-

®But not each number, for several balls may have the
same number.
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dent. In contrast, in LeT a behavioral state
must be active for its link to be expressed
behaviorally. One could say that the most
active state (the equivalent of the accumulator
content) retrieves the associative link (the
equivalent of the memory content). Pursuing
the analogy, because the links are sampled by
the states, which represent time, one could say
that in LeT retrieval is time dependent. This
difference epitomizes the parallel and serial
architectures of SET and LeT, respectively.

What is represented in memory? Relative (SET)
vs. absolute (LeT) local reinforcement rates. In SET,
the memory contents in time-based schedules
depend only on the moments of reinforce-
ment; if a reinforcer is collected at time t, a
count representing t is added to memory; but
if no reinforcer is collected at t, memory does
not change. Because extinction plays no role
in the model, the memory in SET can
represent only local relative rates of reinforce-
ment. In contrast, in LeT, the associative
vectors represent not only the moments of
reinforcement (via which link is strength-
ened), but also the absolute reinforcement
rates at those moments (via how strong each
link is). In LeT, the local rate is, in a sense,
part of what the animal effectively learns in
timing tasks. Another way to see this difference
is to realize that for all practical purposes the
memory stores in SET are like a relative
frequency histogram, or a probability distribu-
tion. From it one can determine whether
reinforcement is more likely to occur at time
t; or time ty into the trial, but not how
frequent reinforcement is at time t;. In LeT,
the strengths of the links are more like an
absolute frequency histogram, not a probabil-
ity distribution, and from it one can determine
not only whether reinforcement is more likely
to occur at time t; or time ty, but also how
frequent reinforcement is at time t;.

Context independent (SET) vs. context dependent
(LeT) memories. This is perhaps the least
obvious difference between the two models.
To illustrate it, consider the bisection task
described above. According to SET the con-
tents of the Mgreq and Mgyeen memory stores
depend only on the duration of the two
samples. The contents of the Mgreen, for
example, depend on the duration of the long
sample (4s) and are not affected by the
duration of the short sample (1 s). This means
that if the pigeons were trained with a short
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sample of 2 s, instead of 1 s, the contents of
Mgreen Would remain the same because the 4-s
sample did not change. We refer to the
assumption that the contents of a memory
store depend exclusively on the duration of its
associated sample and not on the duration of
the alternative sample as ‘‘context-indepen-
dent memories’’.

In contrast, in LeT the strengths of the links
are context dependent. To understand this
point, consider the links between the states
and the Green response (see Figure 1, bottom
right panel). Their final values will depend on
the duration of the long and short samples.
Given the model’s learning rule, the links with
the Green response change not only after 4-s
samples, when Green is reinforced and Red
extinguished, but also after 1-s samples, when
Green is extinguished and Red is reinforced.
Hence, if the duration of the short sample
changes, the final values of the links connect-
ing the states to the Green response will also
change. Because the link vectors in LeT
correspond to the memory stores in SET, we
conclude that temporal memory is context
sensitive in LeT but not in SET.

Given these differences, researchers would
naturally like to know whether they are
sensitive to empirical test and, equally impor-
tant, whether they have theoretical import. We
address these issues next.

II. EMPIRICAL TESTS: SET VERSUS LET

The first and larger set of studies described
below deals mainly with the issue of context
sensitivity. The second set of studies deals with
the issue of what is represented in memory.
The conceptual analyses that follow them deal
with the issue of concentrated versus distrib-
uted memories and how temporal memories
are formed and accessed.

Is Temporal Memory Context Sensitive? The Double
Bisection Studies

To examine empirically the difference be-
tween the two models regarding context
sensitivity, we developed the double bisection
task (e.g., Machado & Keen, 1999). Its key idea
is to vary the context of a sample in two
temporal discriminations and see if that
variation affects the generalization tests. Fig-
ure 2 shows the details. In a matching to
sample task, a pigeon initially learns to choose
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Fig. 2. A double bisection task is a conditional dis-
crimination in which the animal learns two mappings, {S;,
S4—{Red, Green} on ‘‘Short’ trials, and {S4, S;16}—{Blue,
Yellow} on ‘“Long” trials. The subscripts indicate the
sample duration; the arrow indicates that the first and
second responses in each pair are correct following the
first and second samples, respectively.

e

a Red key after 1-s samples and a Green key
after 4-s samples®. This discrimination may be

5Here and elsewhere we assume that all pigeons had the
same key color assignments. In the real experiment, color
was counterbalanced.
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represented by a mapping between the stimu-
lus pair (S;, S4) and the response pair (Red,
Green), {Sq, S4} — {Red, Green}, where the
subscripts identify the sample durations and
the arrow means that the first response is
rewarded following the first sample and the
second response is rewarded following the
second sample. The pigeon then learns a
second discrimination, to choose a Blue key
after 4-s samples and a Yellow key after 16-s
samples, {S4, S;¢} — {Blue, Yellow}. Finally, the
two discriminations are integrated in the same
session. Half of the trials are the relatively
short trials {S;, S4} — {Red, Green}, henceforth
referred to as ‘‘Short” trials, and half of the
trials are the “Long” trials {S4, S;¢} — {Blue,
Yellow}.

Having learned the two discriminations,
what will the pigeon do in generalization
tests in which the duration of the sample
ranges from 1 to 16 s and the choice keys
are Green and Blue? Both keys were
associated with the same sample duration,
4 s, but their contexts differed. The context
for the Green choices was the 1-s sample
associated with Red, whereas the context for
the Blue choices was the 16-s sample
associated with Yellow. Will a sample be
represented differently when it is embedded
in different contexts?

SET is readily extended to the double
bisection task. Instead of two, the animal
forms four memories, each indexed by a
different key (i.e., Mged, Mgreens Mpe and
Myeiiow) and associated with one sample (1 s,
45, 45, and 16 s, respectively). Because the
memories are context independent, the con-
tents of Mgreen and Mgy, will be statistically
identical. That is, the distributions of counts
in the two stores will have the same mean and
standard deviation. Hence, when the pigeon
has a choice between the Green and Blue keys
after a sample #s long, it will compare the
number in the accumulator with two samples
extracted from identical distributions. The
net result will be that preference will not
change with sample duration. As the dotted
line in the top left panel of Figure 3 shows,
the function plotting the preference for
Green over Blue, P(GIG vs. B), against t will
be a horizontal line.

LeT also is readily extended to the double
bisection task. Instead of two, there will be
four link vectors (Wgreds WaGreens Walue and
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Fig. 3. The left panels show the predictions of SET
and LeT for the generalization tests. In these tests, the
sample ranges from 1 to 16 s and the comparison stimuli
are one of the four pairs Green/Blue, Red/Yellow, Red/
Blue, and Green/Yellow. The test with Green/Blue (top)
is critical because the two keys were associated with the
same 4-s sample duration. On these tests, SET predicts no
effect of sample duration, whereas LeT predicts stronger
preference for Green with longer samples, the context
effect. The right panels show the data from five studies:
Machado & Keen (1999), Machado & Pata (2005), Oliveira
& Machado (2008), Arantes & Machado (2008) and
Arantes (2008).

Wyenow) coupling the states with the operant
responses. Due to the contingencies of rein-
forcement and the model’s learning rule,
these vectors will change during training.
Table 2 helps to understand how. We divide
the states into three classes, those most active
after 1-s samples (‘“‘Early’’), 4-s samples (‘‘Mid-
dle”’), and 16-s samples (‘‘Late’’). Initially,
they are all equally associated with the four
responses (i.e., Wy(n) = 0.5 for all r responses
and n states). Then, during the “‘Short” trials,
the “Early” states will become coupled strong-
ly with Red and weakly with Green; the initial
coupling of these states with Blue and Yellow
will remain roughly unchanged because, when
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Table 2

Strength of the links (W) between the states and the choice
responses.

States
“Early”  “Middle” “Late”
Responses Red W1 W—-0 W=05
Green W—-0 W—-1 W=05
Blue W= 05 W-—1 W—0
Yellow W= 0.5 W—0 W—-1

Note. “‘Early”’, “‘Middle’” and “‘Late’” represent the states
most active after 1-, 4-, and 16-s samples, respectively.
Initially, all links equal 0.5. The arrows show the effects of
training in the double discrimination {S;, Sy — {Red,
Green} and {S,, Si6} — {Blue, Yellow}.

these states are the most active, rarely is the
pigeon given a choice between Blue and
Yellow. Hence, as the first column of Table 2
shows, at the end of training Wgeq(‘‘Early’”’) =
1, Wgreen (““Early”’) = 0, and Wgy, (“‘Early’”) =
Wyenow (“‘Early’””) = 0.5. The remaining col-
umns show how the “Middle” and ‘‘Late”
states become coupled with the responses. At
the steady state, the “‘Early”’ states will be
coupled more with Blue than with Green and
therefore, after 1-s samples, the pigeon will
prefer Blue to Green. Conversely, the “‘Late”
states will be coupled more with Green than
with Blue and therefore, after 16-s samples, the
pigeon will prefer Green to Blue. More
generally, as the solid line in the top left panel
of Figure 3 shows, LeT predicts that prefer-
ence for Green should increase with sample
duration.

Another way to understand LeT’s predic-
tions is in terms of approach and avoid-
ance. During the ‘‘Short” trials, the pigeon
learns to approach Red and avoid Green
after 1-s samples, but it learns little if
anything regarding Blue and Yellow. Hence,
during the tests with 1l-s samples and the
Blue and Green keys, the pigeon, deprived
of the opportunity to choose Red, avoids
Green and therefore chooses Blue. By the
same token, during the ““Long’ trials, the
pigeon learns to approach Yellow and avoid
Blue after 16-s samples, but it learns little if
anything regarding Red and Green. Hence,
during the tests with 16-s samples and
the Blue and Green keys, the pigeon,
deprived of the opportunity to choose
Yellow, avoids Blue and therefore chooses
Green. Preference for Green should in-
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crease w1th the sample duration, the con-
text effect.”

Although the tests with the Green and Blue
keys are the most critical to examine the
context sensitivity issue, three other tests may be
run to further compare and contrast the
models. After samples ranging from 1 to 16 s,
the pigeon is given a choice between two other
keys that have not been paired before, Red and
Yellow, Red and Blue, or Green and Yellow. As
the dotted lines in the left panels of Figure 3
show, SET predicts that the psychometric
functions for the three tests will have the same
shape—in fact, it predicts that they will be scale
transforms. In contrast, LeT predicts a descend-
ing curve when the choice is between Red and
Yellow, a U-shaped curve when the choice is
between Red and Blue, and an inverted U-
shaped curve when the choice is between Green
and Yellow. The general trend of these predic-
tions is readily understood by comparing the
rows of the two responses in Table 2 (see
Machado & Pata, 2005, for quantitative details).

The basic finding: The Context Effect. The right
panels in Figure 3 show the average results of
five studies. Machado and Keen’s (1999) study
used the basic procedure described above. The
other four studies changed the basic proce-
dure as follows: a) Arantes (2008) replaced the
simultaneous discrimination task by its succes-
sive (or go/no-go) version ; b) Arantes and
Machado (2008) never integrated the “‘Short”
and “‘Long’’ training trials in the same session;
c¢) Oliveira and Machado (2008) used visually
different sample stimuli during the “‘Short”
and “‘Long’’ trials; and d) Machado and Pata
(2005) ran the test trials under nondifferential
reinforcement instead of extinction.

"The context effect may also be interpreted as a peak-
shift-like phenomenon. Pecking the Green and Blue keys
are operants controlled by the %ample duration. This
control is maximal at 4s, the SP, and, like for other
stimulus dimensions, it may decrease as the signal duration
departs from 4 s (Church & Gibbon, 1982) The 1-s sample
(associated with Red) may be seen as an S* for peckmg the
Green key. If we assume that the effect of the S is to shlft
the peak of the generalization gradient away from the sA
(Elsmore, 1971; Guttman, 1959; Hanson, 1959; Russell &
Kirkpatrick, 2007) then the gradient for Green will have its
peak above 4 s. By a similar reasoning the peak of the
generalization gradient for Blue will shift to durations
shorter than 4 s because its S* is at 16 s. The net effect of
these two shifts is that the gradient for Blue will peak at a
shorter duration than the gradient for Green. Hence, on
tests with the Green and Blue keys, preference for Green
will increase with sample duration, the context effect.
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Despite marked procedural differences, the
results were similar. When the choice was
between the Green and Blue keys (top right
panel), the keys associated with the same sample
durations but in different contexts, the prefer-
ence for Green increased with sample duration.
The result has substantial generality and it is
consistent with LeT but not with SET. In the test
with Red and Yellow, the keys associated with
the shortest and longest samples, respectively,
the results show that preference for Red
decreased with sample duration, a result consis-
tent with both models. In the remaining two
tests there was more variation across pigeons. In
the Red/Blue case, the psychometric function
was roughly U-shaped, whereas in the Green/
Yellow case it was roughly inverted U-shaped.
Again, this pattern of results is qualitatively
closer to LeT than SET.

Quantifying the context effect. In addition to
predicting the context effect, LeT can go one
step further and quantify it. Suppose two
groups of pigeons learn the double temporal
bisection task. The ‘‘Short’ trials are the same
for both groups but the “Long’ trials differ.
For Group 16 they are {S4, S;s} — {Blue,
Yellow}, as in the previous experiments. For
Group 8 they are {S4, Sg} — {Blue, Yellow}. The
only difference between the groups is the
duration of the longest sample, 16 s or 8s.
Will both groups show the context effect? And
if so, will the magnitude of the effect differ
between them?

The left and middle panels of Figure 4 show
the predictions of each model. For the critical
test between Green and Blue, SET again
predicts no effect of sample duration. LeT
predicts that preference for Green should
increase with sample duration in both groups
(the context effect), and that preference for
Green should increase faster in Group 8 than
in Group 16. That is, Group 8 should show a
stronger effect. The reason is that, according
to the model, avoidance of Blue at 8 s will be
stronger in Group 8 than Group 16; hence, at t
= 8 s, preference for Green over Blue will be
stronger in Group 8%,

81f preference for Green over Blue is due to a peak-shift-
like effect, then that preference should be enhanced by
shortening the distance between the S and the st
(Guttman, 1959; Hanson, 1959). The distance between
the SP and S is less in Group 8 (S-SP = 4) than in Group
16 (S2SP = 12).
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Fig. 4. The left and middle panels show the predic-
tions of SET and LeT, respectively, for the test trials of two
groups exposed to a double bisection task. Both groups
learned the mapping {S;, S4—{Red, Green} on ‘“‘Short”
trials, but, on ““‘Long” trials, Group 8 learned the mapping
{S4, Sg}—{Blue, Yellow}, whereas Group 16 learned the
mapping {S4, Si6}—{Blue, Yellow}. The right panels show
the data from Machado & Pata (2005).

For the remaining tests, both models predict
that preference for Red over Yellow will
decrease with stimulus durations faster for
Group 8 than for Group 16. Given a choice
between Red and Blue, SET predicts the same
monotonic decreasing function for the two
groups, whereas LeT predicts two distinct U-
shaped functions. The function for Group 16
should be wider than the function for Group
8. And given a choice between Green and
Yellow, SET predicts that preference for Green
should decrease with stimulus duration, but
faster for Group 8 than for Group 16. LeT
predicts two inverted U-shaped functions, with
the function for Group 16 being wider than
the function for Group 8.

The rightmost panels of Figure 4 show the
experimental results (Machado & Pata, 2005).
The top panel reveals the context effect in
both groups—preference for Green over Blue
increased with sample duration. It also reveals
that preference for Green increased faster for
Group 8 than Group 16. These results are
consistent with LeT but not SET. The remain-
ing panels show that the shape of LeT’s
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predicted curves was roughly similar to the
shape of the obtained curves. The major
discrepancy between LeT and the data oc-
curred for Group 16 in the two bottom panels,
for in each case the model predicted curves
considerably wider than the observed curves.
In fact, LeT always predicts narrower curves for
Group 8 than for Group 16, a prediction at
odds with the data. Concerning SET, the shape
of its predicted curves agreed with the data
reasonably well when the choice was between
Red and Yellow (second row), but in the other
cases the shape of SET’s curves was at odds
with the shape of the obtained curves.

Converging evidence for the conlext effect. Ma-
chado and Arantes (2006) attempted to obtain
the context effect in a different way. Their
rationale was similar to using the retardation-
of-acquisition test to determine whether a
stimulus is a conditioned inhibitor (Rescorla,
1969). After a group of pigeons learned the
prototypical double bisection task, it was
divided into two and each new group learned
a new temporal discrimination involving the 1-
s and 16-s samples and the Green and Blue
keys. The only difference between the two
groups was that one learned the mapping {S;,
Sq6} = {Blue, Green} and the other learned the
alternative mapping {S;, S;s} — {Green, Blue}.
At issue was which group would learn the new
discrimination faster.

SET predicts equal speeds of acquisition.
Because memories are context independent,
there is no reason for one of the discrimina-
tions to be easier than the other. LeT predicts
sharply different results for the two groups.
According to LeT, learning the double bisec-
tion task creates a tendency to prefer Blue to
Green after 1l-s samples, but Green to Blue
after 16-s samples. Therefore, for group {S;,
Si6} — {Blue, Green} the new task will be easy
because it is consistent with the tendency
induced by the previous training. In contrast,
for group {S;, Si6} — {Green, Blue} the new
task will be difficult because it is inconsistent
with the tendency induced by the previous
training. According to LeT, the acquisition of
Group Inconsistent should be retarded com-
pared to the acquisition of Group Consistent.

The top panels of Figure 5 show LeT’s
specific predictions. During the first session
with the new discrimination, both groups will
behave similarly despite opposite contingen-
cies of reinforcement. Whereas Group Consis-
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Fig. 5. The top panels show the predictions of LeT for
Groups Consistent and Inconsistent. Each curve shows the
probability of choosing Green over Blue as a function of
sample duration. The number on each curve identifies the
session for which the curve applies (e.g., curve 0 =
immediately after double bisection training, curve 1 =
after one session with the new discrimination training,
etc.). The bottom panels show the data from Machado &
Arantes (2006). Choices following the 1-s and 16-s samples
were reinforced provided they were correct, but choices
following the 2-, 4- and 8-s samples were not reinforced.
Green was correct following the 16-s samples for Group
Consistent and the 1-s samples for Group Inconsistent.

tent will be close to the steady state since the
first session, Group Inconsistent will need a
few sessions to reach the steady state. The
bottom panels show the results. For Group
Consistent, preference for Green increased
with sample duration and the psychometric
functions did not change appreciably from the
first to the last session. For Group Inconsistent,
during the first session, preference for Green
increased with sample duration despite the
opposite contingencies of reinforcement! Dur-
ing the second session, preference did not
change systematically with sample duration. By
the last session, preference for Green de-
creased systematically with sample duration
in accord with the contingencies of reinforce-
ment. This pattern of results is strongly
consistent with LeT but not with SET.
Summary. The studies reviewed above (see
also Oliveira & Machado, 2009) exploited one
of the differences between the SET and LeT
models, the context sensitivity of temporal
memories. In the double bisection task, LeT
predicted a context effect but SET did not. In
all studies, the context effect was obtained—in
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simultaneous and successive discrimination
tasks, directly on test trials and indirectly
through its effects on the acquisition of a
new discrimination, and with and without local
or global cues signaling the forthcoming trial.
Examining the two models has revealed an
unknown property of timing, the context
effect: Temporal memories are context depen-
dent.

What is Represented in Memory? The Free-Operant
Psychophysical Procedure Studies

The next studies examined another differ-
ence between SET and LeT, namely, what is
represented in memory. Imagine this hypo-
thetical situation. Two pigeons are exposed to
60-s trials. For pigeon A, one reinforcer is
scheduled on each trial; for pigeon B one
reinforcer is scheduled every fourth trial on
average. For both pigeons, scheduled reinforc-
ers are delivered randomly at 15-s or 45-s since
trial onset; never at other times. Hence,
pigeons A and B receive food at the same
moments within the trial, but the absolute
reinforcement rate at those moments is four
times higher for pigeon A than pigeon B.

According to SET the memory contents of
pigeons A and B will be identical because
memory represents only the moments of
reinforcement. The 2 pigeons will learn that
reinforcement occurs at 15s and 45 s, but
because extinction plays no direct role in
timing, they will not learn how often rein-
forcement occurs at those moments. In con-
trast, according to LeT, the memory of the 2
pigeons (i.e., the associative links) will differ
because memory represents the moments of
reinforcement (via which links are changed)
and the rate of reinforcement at those
moments (via by how much the links change
with reinforcement and extinction). There-
fore, the 2 pigeons will learn not only that
reinforcement occurs at 15 s and 45 s, but also
how often it occurs at those times®.

The basic finding. One way to examine this
issue empirically is through the free operant
psychophysical procedure, FOPP (Bizo &
White, 1994a, 1994b, 1995a, 1995b; Killeen,

9The distinction between times of reinforcement and
rates of reinforcement at those times is echoed in the dual
memory structure, pattern memory and strength memory,
respectively, of Guilhardi, Yi, and Church’s (2007) timing
model.
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Fig. 6. Psychometric functions obtained with the Free
Operant Psychophysical Procedure—pecks to one key, say
L, are reinforced (according to one or more VIs) only
during the first half of the trial, and pecks to the other key,
R, are reinforced (also according to one or more VIs) only
during the second half of the trial. In the top panels, when
the overall reinforcement rate favored the L key (first one
of the two VI schedules), the psychometric function
shifted to the right; when it favored the R key (last one
of the two VI schedules), it shifted to the left. The middle
panels show that when the overall reinforcement rates
differ, the psychometric function shifts only if the local
reinforcement rates differ around the middle of the trial;
the bottom right panels show that when the overall
reinforcement rates are equal, the functions shift provided
the local reinforcement rates differ in the middle of the
trial. The data are from Bizo & White (1995a) (top left
panel) and Machado & Guilhardi (2000) (remaining
panels). The curves show the fit of the LeT model.

Hall, Bizo, 1999; Stubbs, 1980). A 50-s trial
starts with the illumination of two keylights, L
and R. For the first 25 s only L choices are
reinforceable; for the last 25 s only R choices
are reinforceable. During a baseline condition
the reinforcers are scheduled by two indepen-
dent Variable-Interval (VI) 60-s schedules. The
results show that, as time into the trial elapses,
the proportion of R pecks increases from 0 to
1 according to a sigmoid function, with
indifference around the middle of the trial.
This finding is illustrated by the empty squares
in the top left panel of Figure 6 (Bizo & White,
1995a). When the experimenters made the L
key richer by changing the VI schedules (e.g.,
VI 40 s for L and VI 120 s for R) the birds
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switched to the R key later than during the
baseline and the psychometric function shift-
ed to the right. Conversely when the experi-
menters made the L key poorer (VI 120 s for L
and VI 40 s for R) the animals switched to the
R key earlier than in the baseline and the
psychometric function shifted to the left.

Machado & Guilhardi (2000) reproduced
Bizo & White’s (1995a) experiment, but, for
reasons explained below, they divided the 60-s
trial into four segments. Pecks to the L key
were reinforced only during the first two
segments; pecks to the R key were reinforced
only during the last two segments. Reinforcers
were scheduled by four independent VIs, each
operating during one segment. The notation
©120-120 / 40-40"’, for example, means that L
pecks were reinforced according to a VI 120s
during the first segment and another VI 120s
during the second segment, but R pecks were
reinforced according to a VI 40s during the
third segment and another VI 40s during the
fourth segment. The results, displayed in the
top right panel of Figure 6, show that when
the pigeons experienced a threefold differ-
ence in reinforcement rate between the L and
R keys, the psychometric functions shifted
appreciably.

SET has not been applied to the FOPP.
However, its usual rules of memory formation
would suggest the following account. The
animal would form two memory stores, one
containing the times of reinforcement for L
key pecks and the other the times of rein-
forcement for R key pecks. Given that rein-
forcers are set up according to a VI schedule,
the reinforced times will be distributed uni-
formly across the interval and independently
of the VI parameters (see Machado & Guil-
hardi, 2000). Hence, according to SET, the
animal’s memories will not change with
variations in the VI schedules and therefore
the psychometric functions should not shift.
More generally, the memory contents of SET
cannot predict the experimental findings
because they are insensitive to changes in
reinforcement rate that are not accompanied
by changes in the distribution of reinforce-
ment times.

For LeT the shifts of the psychometric
function depend on the link vectors. As
before, divide the states into three classes,
the states most active at the beginning
(“‘Early”’), around the middle (‘“Middle”’), or

ARMANDO MACHADO et al.

at the end (‘“‘Late’’) of the trial. Given the
reinforcement contingencies, the “‘Early”
states will be linked mostly with the L response
and therefore the pigeons will prefer the L key
at trial onset; the ‘““Late’ states will be linked
mostly with the R response and therefore the
pigeons will prefer the R key at the end of the
trial. The ‘Middle’” states will be linked
differently across conditions. When the VIs
are equal, these states will be linked equally
with the two keys and therefore, around the
middle of the trial, the pigeon will be
indifferent; when the VIs favor the L key, the
“Middle”’ states will be linked more with the L
than the R key and therefore, around the
middle of the trial, the pigeon continues to
prefer the L key and the psychometric
function shifts to the right. Conversely, when
the VI for the L key is poorer, those states will
be linked more with the R key and the
psychometric function shifts to the left. The
lines in the top panels of Figure 6 show LeT’s
account (see Machado & Guilhardi, 2000, for a
more detailed explanation and mathematical
details).

Local rates at time t. LeT makes one finer
prediction—the psychometric function will
shift only when the differences in reinforce-
ment rate between the two keys occur in the
middle of the trial. That is, for the function to
shift, it is neither sufficient nor necessary that
one key delivers more rewards than the other.
Two sets of results support this claim. The first
(Machado & Guilhardi, 2000, Experiment 1)
addressed the sufficiency condition by com-
paring the shifts in two groups of pigeons (see
middle row in Figure 6). The difference in the
overall reinforcement rate between the keys
was similar in the two groups, but whereas the
left panel group experienced different rein-
forcement rates around the middle of the trial
and similar rates at the extremes of the trial,
the right panel group experienced a differ-
ence at the extremes but not at the middle of
the trial. According to LeT, only the former
group should show a shift. As the middle
panels show, the results were consistent with
LeT. Hence, a difference in overall reinforce-
ment rates between the two keys is not
sufficient to move the psychometric function.

The second experiment (Machado & Guil-
hardi, 2000, Experiment 2) addressed the
necessary condition. The L and R keys always
delivered the same overall reinforcement rate
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(see bottom panels). However for the left
panel group the reinforcement rates around
the middle of the trial differed, but for the
right panel group they were equal. LeT
predicted a shift in the former group only
and the results were consistent with the
predictions. Similar shifts were obtained also
with rats (Guilhardi, Macinnis, Church &
Machado, 2007). Hence, a difference in
overall reinforcement rate between the two
keys is not necessary to move the psychometric
function.

Summary. The FOPP studies looked into
another difference between SET and LeT, the
contents of temporal memory. According to
LeT, memory represents both the times of
reinforcement and the reinforcement frequen-
cies at those times; according to SET, memory
represents only the times of reinforcement.
However, it does not follow that SET cannot
account for the empirical findings obtained
with the FOPP. In fact, it is possible that by
combining a) a threshold carefully biased by
the difference in absolute reinforcement rates
with b) memory stores that represent relative
reinforcement rates, SET could predict the
shifts of the psychometric function. If that
proves to be the case, then more informative
(and perhaps more complex) experiments will
have to be designed to disentangle the two
conceptions of what is represented in tempo-
ral memory.

Is Temporal Memory Concentrated or Distributed?
The Challenge of Mixed-F'I Schedule

SET is not a learning model. However, like
any other model, to be able to work at all it
must make minimal assumptions about learn-
ing—for example, that two memories are
formed in the simple bisection task {S,
S4t—{Red, Green}. Minimal as they may be,
these assumptions may have unanticipated
consequences. Continuing with the example,
if a theory assumes that an animal forms two
memory stores (see, e.g., Gibbon, 1981, 1991;
Gibbon et al., 1984; Gallistel, 1990), the theory
must be reasonably clear about how the stores
are accessed. In SET, this means answering the
following question, “At the end of the trial,
how does the timing system decide in which
memory to save the current number in the
accumulator?”” The answer is straightforward:
“If the reinforcer came from pecking the Red
key, the number is saved in one memory store;
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Fig. 7. Average data from one pigeon exposed to a
mixed FI 30s-FI 120s schedule (points) and the fit of the
LeT model (curve). Data from Catania & Reynolds (1968).

if it came from pecking the Green key it is
saved in another.”” More generally, accumula-
tor counts are saved to a particular memory
store on the basis of the structural features of
the task (e.g., choosing this or that distinctive
key and getting a reward). Moreover, because
reinforcement of the two types of pecks follows
different sample durations, one memory store
will come to represent the 1-s interval (Mgeq),
and the other store will come to represent the
4-s interval (Mgyreen). The theory has no major
difficulty accounting for the temporal discrim-
ination.

The basic finding. Consider now a simpler
task. A pigeon receives food for pecking a key
after either 30 s or 240 s have elapsed since
trial onset. There is only one key and one
feeder in the situation and no cue signals
whether the current trial will be short or long.
The results of this mixed FI 30s-FI 240s
experiment show that during the long trials
average response rate increases from the
beginning of the trial until approximately
30 s have elapsed, then it decreases, and then
it increases again until the end of the trial.
Figure 7 shows one example from Catania and
Reynolds (1968; see also Ferster & Skinner,
1957, pp. 597-605; Leak & Gibbon, 1995;
Whitaker, Lowe & Wearden, 2003, 2008). Leak
and Gibbon showed that on most long trials
the pigeons paused at the onset of the trial,
then pecked until the shorter FI elapsed,
paused again, and then pecked again until
the end of the trial (break-run-break-run
pattern). Early cumulative records from Fer-
ster and Skinner also show, during the longer
FIs, a significant pause or deceleration past the
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time of the shorter FI. As the authors putit, ‘“‘a
well-marked priming exists after the shorter
interval, and a falling-off into a curvature
appropriate to a longer interval”” (p. 597).

This performance could be derived from
SET by assuming that the animal stored the
counts obtained at 30 s and 240 s into distinct
memory stores. As Leak and Gibbon (1995, p.
6) put it, "in SET, there is assumed to be a
single clock but an independent memory
distribution for each criterion time interval'.
Then at the beginning of the trial the bird
sampled a number from the ‘‘short” store,
compared that number with the current
number in the accumulator, pecked the key
when the two numbers were sufficiently close,
stopped pecking when they became sufficient-
ly different again, at which time it sampled a
number from the ‘“‘long” store, and then
executed the same routine. The account
predicts the break-run-break-run within-trial
pattern, the two peaks in the average response
rate curve, and the fact that the widths of the
two peaks show the scalar property (see also
Whitaker et al, 2003, 2008).

A logical problem. Unfortunately, the account
begs the question because that which was
supposed to be explained was assumed in the
explanation. In contrast with the bisection
task, the reinforcers in the mixed-FI schedules
have the same source and no distinct signal
cues the two trials. Hence, how does the
timing system ‘‘direct” the counts to the
appropriate memory store? To reply that when
the count is small it is directed to one store
and when large to another explains nothing,
for the reply simply replaces one unexplained
discrimination (short vs. long intervals) by
another (small vs. large counts).

To be consistent and avoid begging the
question, the current version of SET must
assume that the animal’s memories are in-
dexed (formed, accessed, etc.) by structural
features of the situation, by distinctive cues
being timed, or by the source of the reinforc-
ers, for example, and not by time itself. A
coherent account would proceed by stating
that when the reinforcers come from a single
source and are not correlated with distinct
stimuli, the counts in the accumulator are all
lumped into one and the same memory
store—the memory is concentrated. Therefore
when the reinforcers are obtained at two
distinct moments, as in mixed-FI schedules,
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the distribution of the counts in memory will
be a mixture of two distributions, the one
induced by the reinforcers delivered at short
intervals (30 s) and the other by the reinforc-
ers delivered at long intervals (240 s). The
predicted pattern of behavior also will be a
mixture across trials of two patterns, the break-
and-run pattern associated with an FI 30 s and
the break-and-run pattern associated with an
FI 240 s. This prediction is incorrect because
the observed pattern is break-run-break-run
within most trials (Leak & Gibbon, 1995).

The same problem is present in another
study (Mellon, Leak, Fairhurst, & Gibbon,
1995). Pigeons received reinforcers at 16, 32,
or 48 s since trial onset, without external
signals cueing the FI interval. To explain the
data, the authors assumed three distinct
memory stores representing the three rein-
forcement times, but they did not ask how the
memories might be formed in the first place—
how does the timing system decide where to
save a particular accumulator count? In addi-
tion, to fit the data, the authors assumed that
the three memories were sampled in the
correct order (i.e., first the memory for the
16-s interval, second the memory for 32-s
interval, and lastly the memory for the 48-s
interval), which may be correct, but they did
not explain how the system knows which
memory is first, second, and third. Surprising-
ly, to account for changes in response rate
across the 48-s intervals, the authors also
assumed different absolute response rates at
different moments into the trial. That is, a
temporal discrimination was assumed when
that temporal discrimination was part of the
problem to be explained.

LeT does not face the same difficulties
because its equivalent of the memory counts
(the links) are not concentrated in a memory
bin. They remain distinct and accessed by the
states themselves. In the mixed-FI schedule,
the most active states around 30 s and 240 s
will be linked with the operant response more
strongly than the most active states at times
t « 30 s and 30 « t « 240 s. Hence, average
response rate around the moments of rein-
forcement will be higher than at other
moments, which matches the obtained bimod-
al response curve (see Figure 7).

However, LeT has two main difficulties in
dealing with mixed-FI schedules. First, because
the local reinforcement rate is lower at 30 s
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than 240 s, LeT always predicts higher peak
rates at the long than the short FI. And
second, because the overall reinforcement rate
remains the same, LeT predicts greater preci-
sion in the timing of the longer than the
shorter FI. Although these predictions occa-
sionally hold, as Figure 7 shows, most data sets
from mixed-FIs contradict them (for further
analyses see Whitaker et al., 2003, 2008).

Summary. The mixed-FI analysis questions
SET’s assumption that the representations of
time intervals are lumped into a memory bin.
In addition, it identifies a logical problem with
SET that needs to be solved (see also Machado
& Silva, 2007, and Gallistel, 2007). Because
LeT generates bimodal response rate distribu-
tions without begging the question, it suggests
that temporal memories may be distributed
and accessed serially.

What is Learned in FI Schedules and the
Peak Procedure?

Behavior in time-based schedules has both
stochastic and nonlinear properties. For ex-
ample, in FI schedules subjects typically pause
after the reinforcer for a variable amount of
time and then respond until the end of the
trial. The variable length of the pause illus-
trates the stochastic property; the abrupt
transition from no responding to a high rate
of responding illustrates the nonlinear prop-
erty. Another example comes from the peak
procedure (Catania, 1970; Roberts, 1981).
Here, FI trials are intermixed with significantly
longer trials that end without reinforcement,
the empty or peak-interval trials. On these
longer trials, subjects pause for a variable
interval, typically shorter than the FI, respond
for another variable interval, typically until the
FI elapses, and then pause again either until
the end of the trial or until a new bout of
responding begins (break-run-break or break-
run-break-run patterns; Church, Meck, &
Gibbon, 1994; Kirkpatrick-Steger, Miller, Betti,
& Wasserman, 1996; Sanabria & Killeen,
2007).

SET was designed with the stochastic and
nonlinear structure of behavior in mind. It
accounts for the nonlinear properties by
means of a threshold-based decision rule. In
FI schedules, the animal starts to respond
when the relative discrepancy between the
number in the accumulator and a sample
extracted from the memory of reinforced
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times falls below a threshold. In the peak
procedure, the same start rule applies, but
then the animal stops responding when the
same relative discrepancy falls above either the
same threshold or another threshold (Gibbon
et al., 1984). LeT on the other hand was
designed to deal with the average performance
in time-based schedules and therefore it does
not account for the trial-by-trial variability in
behavior or for its nonlinear properties. This is
one of LeT’s major shortcomings.

The problem. Despite differences of concep-
tion and scope, the models share common
ground in that both describe what animals
learn when exposed to an FI T-s schedule or a
corresponding peak procedure (i.e., a proce-
dure comprising FI T s and empty trials).
According to both models, the animal learns
that food occurs at a particular time since the
beginning of the trial. In SET, the average of
the counts stored in memory represents the
time of food and their variability represents
the uncertainty associated with that time. In
LeT, the distribution of associative strength
across the links represents also the average and
the variability of the time of food. However,
neither model accounts adequately for a well-
known feature of responding in these two
situations. In the peak procedure, a well
trained animal will stop responding shortly
after T s elapse but, in an FI schedule a well
trained animal will not stop responding for a
long interval if the reinforcer is omitted
(Ferster & Skinner, 1957; Machado & Cevik,
1998; Monteiro & Machado, 2009). If in both
situations the animals learned that food occurs
at time T, then why do they pause in the peak
procedure, but continue to respond in the FI
schedule?

Another way of framing the problem is in
term of temporal generalization: If the effects
of reinforcement at T s generalize to neigh-
boring times, both before and after T, and if
this generalization explains why the animal
starts to respond only when it is sufficiently
close to T, then why does the animal not stop
responding, when food is omitted in the FI, as
soon as it is sufficiently away from T? Note that
we are not talking about the effects of chronic
exposure to reinforcement omission in the FI
schedule (e.g., Staddon & Innis, 1969; see also
Staddon & Cerutti, 2003), or the effects of
prolonged extinction following FI training
(e.g., Crystal & Baramidze, 2006; Machado &
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Cevik, 1998; Monteiro & Machado, 2009), but
on the immediate effects of omitting the
reinforcer.

In common presentations of SET (e.g.,
Church, 2003; Gibbon, 1991; Lejeune et al,,
2006), only the start rule is invoked to explain
performance in FI schedules, but both the
start and stop rules are invoked to explain
performance in the peak procedure. In both
situations the start rule will determine when
the animal starts responding, but only in the
peak procedure will the stop rule determine
when the animal stops. Hence, SET *‘solves”
the problem by stating that responding in the
FI schedule persists for a long while because
the stop rule is not used. Unfortunately,
though, the explanation omits a critical step:
What determines when the stop rule is used?
In other words, how do the empty trials, the
only difference between the FI and the
corresponding peak procedure, ‘‘activate”
the stop rule? The question is pertinent
because the empty trials are in every respect
similar to other segments without reinforce-
ment that the animal experiences during
simple FI schedules. To answer that only
empty trials give the animal the opportunity
to learn to stop responding past the reinforce-
ment time, states an obvious fact, but it does
not explain how that fact causes the behavioral
difference. We believe this omission is not
trivial because by stressing only the moments
of reinforcement, which obviously remain the
same in the FI schedule and the correspond-
ing peak procedure, SET has no principled
way to conceptualize the distinctive role of the
empty trials in activating the stop rule.

LeT accounts reasonably well for the average
rate curve in the peak procedure: The states
most active around the reinforcement time,
say, 40 s, will be strongly linked with the
operant response, but the earlier and later
states will extinguish their couplings with the
operant response. This profile of couplings
(earlier and later states uncoupled, ‘“‘middle”
states coupled) explains why average response
rate increases from trial onset, peaks around
40 s, and then decreases. The problem for LeT
is to explain why in the FI schedule response
rate remains high past the reinforcement time.
Because in the FI schedule the trials never
lasted significantly longer than 40 s, the later
states did not have a chance to become
coupled with the operant response. Hence,
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when the reinforcer is omitted and these states
become the most active, they should not
sustain response rate for a long interval. The
model predicts that response rate will decline
shortly past the time of reinforcement. This
prediction is incorrect (e.g., Machado & Cevik,
1998; Monteiro & Machado, 2009).

Summary. In an FI T-s schedule and its
corresponding peak procedure, the reinforce-
ment moments are the same, namely, about T
s from trial onset. Why then do animals
trained on an FI schedule continue to respond
for a long period of time if the reinforcer is
omitted, whereas in the peak procedure they
stop responding shortly after the reinforce-
ment time? A principled account of this
straightforward and well known fact still
challenges SET and LeT.

ITI. A HYBRID MODEL

Both models have strengths and weaknesses.
SET’s strengths are its ability to explain the
stochastic, nonlinear structure of responding
in concurrent timing tasks and the scalar
property. The latter is no small feat given the
ubiquity of the scalar property across a wide
range of procedures and behavioral measures
(but see Lejeune & Wearden, 2006). Its
weaknesses seem to be its assumptions con-
cerning memory—concentrated in bins, insen-
sitive to context, one-dimensional, and not
accessed by temporal cues. Curiously, LeT’s
strengths and weaknesses seem to be the
opposite. On the positive side, LeT postulates
distributed, two-dimensional, and context-sen-
sitive memories accessed serially. On the
negative side, LeT has serious difficulties
handling the scalar property when two or
more intervals are timed in mixed-FI sched-
ules, but the overall reinforcement rate does
not change. The model predicts a clear
violation of the scalar property that is contrary
to the data (Machado, 1997; Whitaker et al.,
2003, 2008). In addition, LeT simply does not
deal with the stochastic, nonlinear structure of
behavior (for other limitations see Machado &
Cevik, 1998, and Rodriguez-Gironés & Kacel-
nik, 1999).

We have explored the possibility that a
hybrid between SET and LeT could overcome
at least some of the weaknesses, while retain-
ing most of the strengths, of each model (see
Church 1997 and Kirkpatrick & Church, 1998,
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on the virtues of hybridization). The new
model preserves the overall learning structure
of LeT but replaces its state-activation dynam-
ics by a scalar-inducing dynamics equivalent to
the pacemaker—accumulator structure of SET.
A stochastic interpretation of the state dynam-
ics plus a threshold-based decision rule en-
ables the new model to deal with the stochastic
and nonlinear structure of behavior and
generate the scalar property without adjusting
its parameters.

In what follows we explain how the new
model works. Then we extend it to three
concurrent timing tasks (FI schedule, peak
procedure, mixed-FI schedules), and two
retrospective timing tasks (temporal bisection
and temporal generalization). Throughout we
will focus mainly on the qualitative aspects of
the model, but in the Appendix we present
some mathematical analyses and an algorithm
to simulate the model.

Model Assumptions

Killeen and Weiss (1987) proposed a gener-
al framework to understand pacemaker—accu-
mulator systems, with scalar variance induced
by counting errors in the accumulator, Poisson
variance induced by random changes in the
pacemaker’s interpulse intervals, and constant
variance induced by motor latencies or delays
in starting the counting process, for example.
Here, we assume only scalar variance to see
how far the model can go with a minimal

assumption.
On each trial, a set of states, numbered n = 1,
2, ..., is activated serially at a rate of A states pers.

That is, the first state will be active from time 0
to time 1/, the second state will be active from
time 1/A to time 2/, and so on. The activation
of the states is like a wave travelling across them
with velocity 2. This velocity is constant within a
trial but varies randomly across trials according
to a Gaussian distribution with mean p and
standard deviation G.

State n has an associative link with the
operant response and the strength of the link
changes at the end of each trial. Let n* denote
the active state when the trial ends. Then the
following rules apply:

1. Reinforcement rule. If the trial ends with
reinforcement then n* is a reinforced state
and AW(n*) = B(1-W(n*)). If the trial
ends without reinforcement, its link chang-
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es according to the extinction rule de-
scribed next.

2. Extinction rule. The strength of the link of
all extinguished states decreases by the

amount AW(n) = —(a/n*)W(n), where
n* is the active state at the end of the
trial.!”

3. For all states that were not active during

the trial, AW(n) = 0.

Finally, while state n is active, responses
occur at rate A provided the link has strength
greater than a threshold 0, that is, W(n) > 0,
with 0 < 0 < 1. Because we were not interested
in absolute response rate, we let A = 1
throughout the study.

In words, states become active in succession;
if the associative link of the active state is
greater than a threshold the animal responds;
the link of the state active at the time of
reinforcement increases, whereas the links of
all its predecessors decrease. The new model
has six free parameters: The state dynamics is
governed by the mean, u, and the standard
deviation, ¢ of the activation wave; learning is
governed by the extinction parameter, o, the
reinforcement parameter, B, and the initial
value of the associative links, represented by
WY; and the decision to respond is governed by
the threshold parameter, 6. However, steady
state performance depends effectively on three
parameters only, the ratio o/p (i.e., the
coefficient of variation of the activation wave),
the ratio ao/f (i.e., the relative effect of
extinction), and 0.

The new model differs from LeT in three
major assumptions. First, whereas in LeT all
states are active at t > 0, albeit in different
degrees, and their activation is described by a
Poisson distribution, in the new model only
one state is active and the state activation is
described by a Gaussian distribution (Gibbon,
1992). Second, in the extinction rule, param-
eter o is replaced by o/n*. The extra com-

'An alternative extinction rule would be as follows.
Instead of wating for the end of the trial to determine the
reinforced state, n*, and then decrease the link strength of
all extinguished states (n< n*), one could decrease the
link strength of a state while it was the active state. In this
case, to obtain the scalar property and preserve the linear
operator model, the change in W(n) would need to be
inversely proportional to n, i.e., AW(n)=-0/n W(n). The
implications of this alternative extinction rule remain to be
worked out.
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plexity brings a major benefit. In LeT, for the
scalar property to hold, o had to be inversely
proportional to the overall reinforcement rate,
that is, the parameter had to be adjusted; the
new rule yields the scalar property without
adjusting its parameters (see below). And
third, the new model can deal with the
variability and nonlinearity of within-trial
performance in concurrent timing tasks.

Concurrent Timing

The next three figures show the model’s
output in FI schedules, the peak procedure,
and mixed-FI schedules. Throughout, the
parameters were =1, ¢=0.2, a=1, p=0.2,
0=0.1, and W°(n) = 0.12, for all states.
Concerning the last two parameters, what is
important is not their specific values but the
relation WY(n) > 0, that is, all links have initial
strength greater than the threshold, insuring
that initially the animal responds regardless of
which state is active. We simulated 10 stat-
pigeons, each exposed to 20 sessions of 50
trials each, averaged the data from the last 5
sessions of each stat-pigeon, and then averaged
the data across stat-pigeons. The time step
equaled At = 0.1 s and the model’s output (0
= no response, 1= response) was collected
every second.

FI schedules. Figure 8 shows the model’s
output in four FI schedules. Here and
throughout, the noisy curves plot the simula-
tion results and the smooth curves, when
present, plot the approximate analytical solu-
tions included in the Appendix. Panel A
illustrates the distribution of the associative
links, W(n). The horizontal dashed line shows
the response threshold. Consider the FI 60-s
schedule (third curve from left) and take into
account that, because the speed of transition
across states had a mean value of p= 1, the
state that was most likely to be active during
reinforcement was state n* =60. During
training, when the first states (n < 40) were
active, reinforcement rarely followed and
therefore the strength of their links decreased
to 0. Subsequent states (40 < n < 100),
however, overlapped with reinforcement and
their links were strengthened. The states still
further down the series (n > 100) were never
active during the trial and therefore their links
retained the initial strength of 0.12. The curves
for the other FIs are interpreted similarly.
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Fig. 8. Model output for four FI schedules, 15, 30, 60,
and 120 s. Panel A: Distribution of the strength of the
associative links, W(n). The smooth lines plot approximate
closed-form solutions derived in the Appendix. Panel B:
response distribution for one stat-pigeon during the last
trial (each row corresponds to one FI). For each second, a
point is plotted if a response occurred. Panel C:
Corresponding cumulative records. Panel D: Average
response rate for each FI schedule. The smooth curves
plot the approximations derived in the Appendix. Panel E:
the scalar property.

The remaining panels deal with response
output. Panel B shows the time of each
response on the last trial of each simulation
and panel C shows the corresponding cumu-
lative records. The postreinforcement pause
lasts approximately two-thirds of the FI. For
short FIs the response pattern is clearly break-
and-run; for the longest FI, the pattern is more
scallop-like as responding goes through a
period of acceleration and then stabilizes (cf.
Dews, 1978; Schneider, 1969). The reason for
these different patterns is that, as the FI
increases, the W(n) curves (see panel A)
become noisier and wider, and their left limbs
have shallower slopes. Hence, the moment
they cross the 0.1 threshold is more sharply
defined for short FIs (break-and-run) than for
long FIs (scallop). Panel D shows the average
response rate curves based on the simulations
(noisy curves) and the theoretical approxima-
tions predicted by the model (smooth curves).
The model reproduces the typical sigmoid
curve. Panel E illustrates that the curves for
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Fig. 9. Model output for four peak procedures. The
FIs were 15-, 30-, 60-, and 120-s long; the empty trials were
always four times the FI length and occurred on half of the
trials. Panel A: Distribution of W(n). The smooth lines plot
approximate closed-form solutions derived in the Appen-
dix. Panel B: response distribution for one stat-pigeon
during the last trial of each peak procedure. Panel C:
average response rate. The smooth curves plot the
approximations derived in the Appendix. Panel D: the
scalar property.

different FIs overlap when plotted in relative
time—the scalar property.

The model predicts that if the reinforcer is
omitted, responding will continue significantly
beyond the reinforcement time. The reason is
that the states that become active after T s have
retained their initial associative strength and
therefore sustain responding (see W(n) curves
panel A). This result is predicted whenever it is
assumed, as we did, that the initial weights are
greater than the threshold (i.e., W’(n) > 0).
Behaviorally, this assumption means that, by
default, the animal responds and then, in an
FI schedule, it learns to withhold its responses
during the initial segment of the trial.

Peak procedure. Figure 9 shows the model’s
output in four peak procedures. The FIs were
15, 30, 60, and 120 s, and the empty trials were
four times longer and occurred on half of the
trials. There are two main differences in the
W(n) curves between the peak procedure and
FI schedules (compare with panel A of
Figure 8). The heights of the W(n) curves
are lower in the peak procedure because of
extinction during the empty trials. And the
right limbs of the W(n) curves decrease to 0 in
the peak procedure because during the empty
trials later states become active and have the
opportunity to lose their initial strength.
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Fig. 10. Model output for two mixed-FI schedules,
mixed FI 15s-FI 120s and mixed FI 30s-FI 240s. Panel A:
distribution of W(n). The smooth lines plot approximate
closed-form solutions derived in the Appendix. Panel B:
response distribution for one stat-pigeon during the last
trial. Panel C: average response rate. The smooth curves
plot the approximations derived in the Appendix. Panel D:
the scalar property.

However, states further down the series, which
have remained inactive even during the empty
trials, retain their initial strength (the right
end points of each W curve equal 0.12). These
states may sustain responding when they
become active past the end of the empty trial
(e.g., Monteiro & Machado, 2009).

Panel B shows the response structure on the
last empty trial of each peak procedure. The
period of responding brackets the reinforce-
ment time; the start and stop times, as well as
the duration of the response period increase
directly with the FI. The average response rate
curves, displayed in panel C, peak around the
time of reinforcement and are slightly asym-
metric. For the longer FIs, average response
rate increases at the end of the trial because
the number of empty trials was insufficient to
extinguish the initial couplings of the late
states. Finally, panel D shows that the scalar
property holds also in the peak procedure.

Mixed-I'l schedules. Figure 10 shows the mod-
el’s output in two mixed-FI schedules, mixed
FI 15s-FI 120s and mixed FI 30s-FI 240s. The
W(n) curves in panel A reveal the two sets of
reinforced states. The structure of the re-
sponse output during the longer trials (see
panel B) consists of two periods of responding,
the first bracketing the shorter reinforcement
time and the second filling the last trial
segment (break-run-break-run pattern). The
average rate curves (panel C) show the two
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Table 3
Learning rules in the bisection task.
Reinforced Extinguished
AWR(n) = +B(1—WR(n)) —aWR(n)
AWG(n) = —BWG(n) +o(1-WG(n))

corresponding peaks. The scalar property
holds in two ways. First, the two average rate
curves overlap when plotted in relative time
(panel D—scalar property across mixed-FIs).
And second, although not shown in the figure,
the two ascending limbs of each response rate
curve also overlap when plotted in relative
time (scalar property within a mixed-FI).

The new model solves some of the problems
with LeT. Thus, in all three procedures, it
predicts the scalar property without having to
adjust its parameters; it generates a behavioral
stream similar to the behavioral stream of rats
and pigeons (variable postreinforcement paus-
es; break-and-run patterns or FI scallops); and
by conceiving of the animals in simple
concurrent timing tasks as learning mainly
when to stop responding, the model predicts
that, if a reinforcer is omitted after FI training,
responding will continue for a long interval
after the reinforcement time. However, some
potential problems with the new model are the
(perhaps excessively) asymmetric curves pre-
dicted for the peak procedure (see Figure 9)
and the fact that in mixed-FI schedules it
cannot predict average response rates higher
at the short than the long FIs (Whitaker et al.,
2003, 2008). It remains to be seen whether
these problems can be corrected by assuming,
for example, a variable threshold, or different
start and stop thresholds, in the peak proce-
dure, and a decaying arousal function map-
ping the timing output to response rate in the
mixed schedules.

Retrospective Timing

Simple and double temporal bisection. For the
temporal bisection tasks, the state dynamics
remains the same but the learning and
decision rules change slightly to accommodate
the specifics of the situation. According to the
new model, at the onset of the sample the
states are activated serially. At the end of the
sample, one behavioral state, say, n, will be
active. State n has links to the two comparison
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Fig. 11. Model output for the temporal bisection task.
Panel A: distribution of the associative links after training
with the simple bisection task {S4, S;s}—{Red, Green}. The
filled and empty circles show the associative links with the
Red and Green responses, respectively. Panel B: psycho-
metric functions plotting the probability of choosing
““Short” during test trials in four simple bisection tasks.
From left to right, the training sample durations were 1 vs.
4,2 vs. 8,4 vs. 16, and 8 vs. 32. Panel C: the scalar property
with bisection at the geometric mean in the four simple
bisection tasks. Panel D: results from the tests with novel
key pairings after training on the double bisection task {S;,
S4—{Red, Green} and {S,4, S1}—{Blue, Yellow}. Simulation
details: training sessions comprised 400 trials with each
sample; the generalization sessions comprised 64 trials for
cach test sample plus 384 trials for each training sample; in
the double bisection task, the test sessions with the novel
key pairings comprised 64 test trials for each test sample
and 3200 trials for each training sample.

stimuli, the Red and Green keys. We represent
the links by WR(n) and WG(n). The decision
rule states that the animal will choose the
Red key with probability WR(n)/(WR(n) +
WG(n)) and the Green key with the comple-
mentary probability. This parameter-free deci-
sion rule is simpler than its equivalent in LeT.

The learning rules, however, remain the
same: If the choice is rewarded, then the link
of the reinforced response increases and that
of the other response decreases, whereas if the
choice is not rewarded the link of the
extinguished response decreases and that of
the other response increases. Specifically,
assume the animal was in state n at the end
of a sample and chose the Red key. Then the
links between state n and the two responses
would change as shown in Table 3.

Figure 11 shows the model’s outputin simple
and double temporal bisection tasks. Through-
out, the parameter values were p=1, =04,
a=0, B=0.1, and W”=0.10. Because initial
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simulations showed more variability in the
results than in concurrent timing tasks, we ran
100 stat-birds instead of 10. For each of the stat-
birds, the simulation followed Machado and
Keen’s (1999) experimental protocol. Panel A
illustrates the distribution of the links in a {S,,
Si6/—{Red, Green} discrimination. The initial
states, more likely to be active after the Short
sample, linked with Red; the later states, more
likely to be active after the Long sample, linked
with Green; states still further down the series
(n > 40) retained their initial link strengthn.

Panel B shows the psychometric function for
each of four discriminations in which the ratio
of the Long-to-Short durations always equaled
4. The sigmoid curves reproduce the three key
properties of temporal bisection data: They
decrease monotonically, have the PSE close to
the geometric mean, and, as panel C shows,
overlap when plotted in relative time. More
extensive simulations and mathematical anal-
yses (see Appendix) revealed that for larger
Long-to-Short ratios (e.g., 16 to 1), the PSE is
between the geometric and harmonic means
(as in, e. g., Siegel, 1986).

Panel D shows the results for the double
bisection task {S;, S4}—{Red, Green} and {S,,
Si6}—{Blue, Yellow}. In the critical test with
Green and Blue, the keys associated with the
same sample duration, the model reproduces
the context effect—preference for Green
increases with sample duration. In the three
other tests with novel key pairings, the model
also reproduces the major trends in the data,
namely, as the sample increases, a) preference
for Red over Yellow decreases systematically; b)
preference for Red over Blue first decreases
until 4 s and then increases (U-shaped); and
c) preference for Green over Yellow first
increases until 4 s and then decreases (invert-
ed U-shaped curve). Although not shown, the
model also reproduces Machado and Pata’s
(2005) findings that preference for Green
increases faster when the longest training
duration is 8 s than when it is 16 s.

In the bisection procedure, the new model
goes beyond LeT in that it generates the scalar
property without parameter adjustments. As
the preceding figure illustrates, the same set of

" Because states further down the chain do no lose their
initial couplings, the model predicts indifference if the test
stimulus is significantly longer than the long training
stimulus. SET cannot predict this effect (see Siegel, 1986).
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parameters produces psychometric functions
that superimpose whenever the ratio of Long-
to-Short durations remains the same. The
model also engenders the context effect and
the other main patterns observed in the
double bisection experiments reviewed above.
However, some problems persist. Whereas LeT
could generate PSEs slightly above the geo-
metric mean, the new model generates PSEs at
or below the geometric mean; for very large
ratios, the predicted PSE is close to the
harmonic mean. In addition, similar to LeT,
the new model cannot accommodate the full
set of results obtained with the double
bisection task, in particular, the test results
involving the “Red vs. Blue”” and “Green vs.
Yellow” keys in simultaneous and successive
discriminations (compare Figures 3, 4 and 6).
It remains to be seen whether adding a source
of Poisson variance to the state dynamics (see
Killeen & Weiss, 1987) corrects these short-
comings.

Temporal generalization. We conclude with a
brief description of how the new model deals
with some basic findings concerning another
retrospective timing task, temporal generaliza-
tion. The LeT model has not been applied to
temporal generalization. Church and Gibbon
(1982) performed the seminal experiments.
Rats were reinforced following a T-s signal, but
not following signals of shorter or longer
durations. The results showed a generalization
gradient with the maximum at T s. In addition,
the authors found that a) linear and logarith-
mic spacing of the nonreinforced durations
had no effect; b) the location of the maximum
and the breadth of the gradient increased with
the reinforced duration; c¢) the gradients
obtained with different reinforced durations
overlapped when plotted in relative time; d)
reducing the probability of reinforcement
following the target T-s signals decreased the
height of the gradient; and e) reducing the
probability of presenting the target T-s signals
also decreased the height of the gradient.

The new model extends readily to the
temporal generalization task: The signal acti-
vates the cascade of states. At the end of the
signal, one state will be active, say, n, and the
strength of its link, W(n), will increase with
reinforcement [i.e., AW(n) = (1-W(n)] and
decrease with extinction [i.e., AW(n) =
-oW(n)]. The probability of responding at
the end of a signal equals the strength of the
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Fig. 12. Model predictions for the temporal general-
ization task (see Eq. 22 in the Appendix). Top panels:
Generalization gradients when the reinforced signal was 4-
s long and the nonreinforced signals were spaced linearly
or logarithmically for a shorter (A) or longer (D) range.
Middle panels: the reinforced signal was 2-, 4-, or 8-s long;
the right panel shows the scalar property. Bottom left
panel: effect of changing the reinforcement probability
following the 4-s, target signal. Bottom right panel: effect
of changing the probability of presenting the 4-s, target
signal on each trial.

link of the active state, W(n). One additional
assumption, also made by Church and Gibbon
(1982), is that, on some trials, the animal’s
decision is not controlled by the signal. During
these trials, the animal responds with some
unconditional probability C. Hence, two fac-
tors determine behavior: If the animal did not
pay attention to the sample (probability 1—m),
it responds with probability C; if it did pay
attention (probability m), it responds with the
probability specified by the model, W(n).
Thus, the overall probability of a response at
the end of a t-s signal equals

PRI) = (1 — ) x C + 1 x W(n),

where n is the active state at the end of the
signal. In the Appendix, we derive the steady
state distributions of W(n) and P(RIt).

Figure 12 summarizes the model’s predic-
tions for the temporal generalization task. To
isolate the effect of the timing parameters,
only the attention parameter, ® and the
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unconditional response probability parameter,
C, were allowed to vary across panels. The
others were fixed at the values p= 1, o= 0.2,
o= 0.01 and B= 0.1. Notice that the free
parameters © and C do not produce any
temporal modulation; hence, in all panels,
the effect of sample duration is mediated
exclusively by W(n). In addition, because in
each panel the two free parameters have the
same value, the differences between the curves
in the panel do not depend on them.

In panels A and D, the 4-s signal was
reinforced with probability 1, the signals were
spaced linearly or logarithmically, and over a
shorter (A) or longer (D) range of durations.
The curves show that the typical generalization
gradient, with a maximum at 4 s, does not
change appreciably with either the stimulus
spacing or range (cf. Church & Gibbon, 1982,
Experiments 1 and 2). In panels B and E, the
reinforced signal varied across conditions (2,
4, or 8 s). The model predicts that the location
of the maximum and the breadth of the
gradient increase with the reinforced duration
(B). In addition, it also predicts that the
gradients obtained with different reinforced
durations roughly overlap when plotted in
relative time (E; cf. Church & Gibbon,
Experiment 3). In panel C, the 4-s signal was
reinforced either with probability 1 or 0.25
while the other signals were never reinforced.
The model predicts that reducing the proba-
bility of reinforcement following the target
signal decreases the height of the gradient (cf.
Church & Gibbon, Experiment 4). Finally, in
panel F, the 4-s reinforced signal occurred on
either 50 or 25 percent of the trials. The model
predicts that reducing the probability of
presenting the target signal also decreases
the height of the gradient (cf. Church &
Gibbon, Experiment 5). We conclude that the
new model accounts well for the major
findings reported by Church and Gibbon
(1982) concerning temporal generalization.

IV. CONCLUSION

The area of timing has witnessed a signifi-
cant increase in the number of theoretical
models. They differ in approach, domain of
application, and generality. Variation in mod-
els is probably necessary to explore the
theoretical domain of timing. But for knowl-
edge to accumulate, variation in models must
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be followed by selection of models and model
ideas. To that end, researchers may examine
the successes and failures of each model and
then attempt to identify the elements that
deserve the credit for the former and the
blame for the latter. They may also design
experiments that by capitalizing on the differ-
ences between the models subject them to
science’s Supreme Court, the empirical test.
Conceptual and mathematical analyses, on the
one hand, and empirical research findings, on
the other hand, are two complementary means
of choosing among models and model ideas
(Machado & Silva, 2007). Through variation
and selection our models evolve and, we hope,
come to depict reality a bit more accurately
than before.

In this paper, we have engaged in some
variation and selection concerning timing
models. We analyzed two contemporary mod-
els, SET and LeT, identified the similarities
and classified the differences between them,
summarized experiments that have started to
explore some of these differences and, in
some cases, to put them to empirical test. Our
conceptual analyses and the empirical findings
we reviewed exposed some of the strengths
and weaknesses of each model. To put these
strengths and weaknesses into perspective, we
review them in the light of seven challenges
that any model or theory of timing must face.
The first three were proposed by Church and
Broadbent (1990):

1. “The first fact that any theory... must
account for is the smooth peak function in
which the mean probability of a response
gradually increases to a maximum near the
time of reinforcement and then decreases
in a slightly asymmetrical fashion.” (p. 58).
This challenge applies not only to the peak
procedure, but also to the temporal
generalization procedure.

2. “The second fact that any theory... must
account for is that performance on indi-
vidual trials, unlike the mean function, is
characterized by an abrupt change from a
state of low responding to a state of high
responding and finally another state of low
responding.”” (p. 58). These abrupt chang-
es in responding occur also in FI and
mixed-FI schedules.

3. “The third fact that any theory... must
account for is that the mean functions are
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very similar with time shown as a propor-
tion of the time of reinforcement.”” (p.
58). Perhaps the greatest constraint for any
timing model, the scalar property is gen-
erally observed in the concurrent and
retrospective timing tasks reviewed above.

The next four challenges are intimately
related to temporal learning and memory:

4. Based on the double bisection experi-
ments we suggest that temporal memories
are context dependent. Hence, a 4-s
interval seems longer when discriminated
from a shorter interval than from a longer
interval.

5. Based on the FOPP experiments we
suggest that temporal memories register
not only the various moments of rein-
forcement but also how often reinforcers
occur at those various moments.

6. Based on the mixed-FI experiments we
suggest that temporal memories are not
collapsed into stores or bins but remain
separate, distributed, and indexed by time
itself. Temporal generalization notwith-
standing, the animal knows, as it were,
what happens at different moments since
a time marker.

7. Any theory of timing must account for the
fact that whereas responding ceases short-
ly after the reinforcement time in the
peak procedure, it continues for a long
interval if the reinforcer is omitted fol-
lowing FI training.

SET meets reasonably well the first three,
but not the last four challenges. Its strengths
are its ability to deal with the scalar property
and with the stochastic and nonlinear prop-
erties of responding in time-based reinforce-
ment schedules. Its weaknesses seem to be its
assumptions concerning memories, their
contents, and how they are formed and
accessed. In its turn, LeT meets reasonably
well challenges 1, 4, 5, and 6, has difficulties
handling the scalar property (3), and simply
does not deal with the stochastic and
nonlinear structure of time-based perfor-
mance (2). Neither model meets convincing-
ly challenge 7.

We have proposed a hybrid model that
may be less in error than its two predeces-
sors. By inheriting the pacemaker—accumula-
tor unit from SET and the learning rules
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from LeT, the hybrid model meets all seven
challenges, at least partly. It deals with the
stochastic and nonlinear properties of re-
sponding in time-based schedules; it gener-
ates temporal generalization gradients that
peak around the time of reinforcement; it
obeys the scalar property; its temporal mem-
ories are context sensitive, two-dimensional,
and accessed serially. And it meets the last
challenge because it assumes that, in time-
based schedules, animals respond by default
and learn to stop responding at time t when
they experience extinction at time t.

But problems remain. The new model
generates asymmetric curves in the peak
procedure; in mixed-FI schedules, the re-
sponse rate at the first peak is equal to or
lower than the response rate at the second
peak, but never higher; and in temporal
bisection tasks with large ratios (e.g., 16), the
PSE is close to the harmonic mean of the Long
and Short durations. Although each of these
results has been observed occasionally, the
model lacks flexibility to account for the
different results obtained in other studies
(e.g., Whitaker et al. 2003, 2008). At this time
we do not know whether additional assump-
tions may correct these problems (e.g., adding
sources of Poisson and constant variance to
the state dynamics; or making arousal decay
between reinforcers). Another cycle of varia-
tion and selection is needed.

In summary, SET has contributed to our
understanding of timing by revealing the
widespread presence of the scalar property
and by providing a simple, intuitive means of
understanding it, the clock metaphor (Church,
1984, 2003; Lejeune et al., 2006; Gibbon, 1991).
Judging by the number of studies that have used
the model, whether to investigate animal or
human timing, and from a behavioral or
neurobiological perspective, its influence has
been enormous (see Allan, 1998). LeT has
contributed to our understanding of timing by
questioning the memory architecture postulat-
ed by SET and, following earlier work by Killeen
and Fetterman (1988), by suggesting an explicit
hypothesis concerning how animals might learn
to time. More to the point, LeT has called our
attention to memory structure in timing.
Perhaps then a hybrid between the two models
will preserve their strengths and eliminate their
weaknesses. We have proposed one. It remains
to be seen whether the new model will confirm

ARMANDO MACHADO et al.

the well known fact that most interspecies
hybrids are sterile or the equally well known
fact that most intraspecies hybrids have in-
creased vigor. Time will tell.
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APPENDIX
FI schedule

We assume an FI T-s long. Variables t and n represent the time into the trial and the states,
respectively, with t = 0 and n = 1, 2...

State dynamics, N(t). On each trial, the states are activated serially, starting with state 1 at trial
onset. The states are activated at a rate of A states per second, with A> 0 a Gaussian random
variable with mean p and standard deviation . We represent by N(x, p, ) the density function,
and by O(x, 1, o) the distribution function, of that Gaussian variable evaluated at x.

Figure Al illustrates the state dynamics on two trials of an FI 15-s schedule. On one trial, the
sampled value of A equalled 0.8 and consequently the active state changed at a rate of 0.8 states
per sec (i.e., every 1.125 s). If we denote by N(t) the active state at time t—the ordinate in
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Fig. Al. The top panel shows two samples paths of N(t), the active state at time t, in an FI T = 15 s. The activation
speed A came from a Gaussian distribution with mean p= 1 and standard deviation 6= 0.2. When A= 0.8, the last active
(and reinforced) state, N(T), equalled 13; when A= 1.2, N(T) = 19. The bottom panel illustrates, forn = 12, how q(n,T),
p(n,T) and r(n,T) relate to the Gaussian density function for A.
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Figure Al, top panel—then N(t) equals the smallest integer greater than At, which we represent
by the symbol [M]. The last active state, that is, the state active at T = 15, the time of
reinforcement, was state 13 (i.e., N(T) = 13); states n < 13 were active before T = 15 s, whereas
states n > 13 were inactive during the trial. We may say that state n = 13 was the reinforced state,
states n < 13 were extinguished states, and states n > 13 were inactive states. Note that in the FI the
last active state is always a reinforced state, but in other procedures this may not be the case (e.g., on
the empty trials of a peak procedure, the last active state is not a reinforced state). On the other
trial, A = 1.2, states n < 19 were extinguished states, state n = 19 was the reinforced state, and states
n > 19 were inactive states. At the end of each trial then we may divide the states into three classes,
extinguished states, the reinforced state, and inactive states. Clearly, in which class a state falls on
any given trial is a random variable that depends on T and the sampled value of A.

Let q(n,T) be the probability that state n is an extinguished state, p(n,T) the probability that
state n is the reinforced state, and r(n,T) the probability that state n is an inactive state.
Obviously, for any state n, q(n,T) + p(n,T) + r(n,T) =1. To derive an expression for q(n,T), note
that state n is an extinguished state if and only if n is less than the reinforced state, N(T). Thus
q(n,T) is the probability that n < N(T), which we represent by P{n < N(T)}. Because N(T) =
[AT], we get

q(n,T)zp{n<mT1}=P{z>%}:1—@(%,;1,0). (1)

Similarly, state n is an inactive state if and only if n > N(T). That is,

r(n,T)=P{n>mT1}=P{n—1>AT}=@(”—;1,;¢,0). (2)

Finally, from p(n,T) =1—q(n,T) — r(n,T), we obtain the probability that state n is the
reinforced state,

n—1

p(n,T) :@(% ,,u,a) cb(T ,,u,a). (3)

The bottom panel of Figure Al illustrates for n = 12 how q(n,T), p(n,T) and r(n,T) relate to
the Gaussian density function for A. The areas show r(n,T) (Eq. (2)), p(n,T) (Eq. (3)), and
q(n.T) (Eq. (1)).

Below we will use the approximation

1 n

)~ 2N (Fn0), 4

pon )% =N (Foo (4)

and from Equation (4) we derive two other relations used to prove the scalar property below,

1

PUknKT) 2 p(0.T), (5)
and

(nk1)~ 2 p(2.7) ©)

n ~—pl-.T).
p > kp k 4

W(n). Let W(n, m) be the strength of the link of state n at the beginning of trial m and E[W(n,
m)] its expected value. We seek an expression that relates E{W(n, m+1)] to E{W(n, m)]. To
determine E[W(n, m+1)], we consider three cases on trial m: the reinforced state, n*, was less
than, equal to, or greater than n. Therefore,
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E[W(n,m+1)|W(n,m)]=W(n,m)+p(n,T)S(1—W(n,m))— q(n,T)% W(n,m)
= Bp(n. 1)+ [1=Bp(n. )= = g(n. 1D W)

Next, we approximate the value of n” by its expected value, E[n"] = uT, and take expectations
again to obtain,

E[W(n,m+1)] = pp(n.T)+ [1 —Bp(n,T) = #LT q(n,T)] E[W (n,m)]

The solution of this difference equation is

E[W(n,m)]=c(n,T) 11_[2((’2?% +w(n,T)]" WP (7)
with
a(nT)=pp(n,T)
a(n,T)=1=fp(nT) = rq(nT).

Equation (7) was used to fit the simulation data in panel A of Figure 8.
At the steady state, and dropping the expectation symbol to ease the notation, we obtain

vy aml) Bp(n.T)
W (n)= 1—aw(n,T)  Bp(n,T)+ ﬁq(n,T)

(8)

Scalar property. To stress the fact that W(n) depends on T, we write it as W"(n,T). The
function W (n,T) shows the scalar property because

pp(kn,kT)

Wk ) = e kT + e q(kn.KT)

—W*(n,T)

where we have used Equation (5) and the fact that, for any integer k, q(kn, kKT) = q(n,T).

R(t). Responses occur when the active state has strength above the threshold, that is, when W(n)
> @. This inequality has no explicit solution for n. Hence, to predict the average response rate
function, we determine, numerically, the first state n for which W(n)>®; call this state n". The
response probability at time t may be approximated by the probability that state n* or a subsequent
state is active at time t, that is,

nt—1 nt—1
P{R(z):l}zp{mﬂzn+}=P{A> t }:1(1)( t ,,u,a) 9)

Equation (9) is plotted in panel D of Figure 8 for four different FIs. The approximation is
reasonable.

Exploratory analyses showed that the R(t) curve is well fitted by a log-normal distribution, but
we have not been able to derive the distribution from the model.

Simulation algorithm. Assuming At = 1 s, the following steps would simulate the model:

1. Initialize model parameters and set W(n) = WP for all n;
2. For each trial,
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a. Sample the value of A from a Gaussian distribution with mean p and standard deviation
G;
b. Then, for all t equal to 1, 2,...,T, do

i. Determine the state active at time t: N(t) =[At], where the function [x] means the
smallest integer greater than x;
ii. Determine the response at time t. A response occurs if the strength of the active state
at time t (i.e., N(t)), is above threshold. Hence, R(t) = 1 if W(N(t)) > @, and R(t) =
0, otherwise;
c¢. Determine the reinforced state, n"=N(T) = [AT]; ,
d. Increase the link strength of the reinforced state: Wn') - Wn") + B(I—W(n*));
e. Decreasg the link strength of all extinguished states: W(n) — W(n) — (a/n")W(n), for
all n<n'.
f.  Save relevant trial statistics and go to the next trial.

Peak procedure

The peak procedure comprises FI T;-s trials intermixed with Te-s empty trials (To>T); the FI
trials occur randomly with probability r;.

Wi(n). A set of steps similar to those used for the FI schedule (see also Machado, 1997) yields
the approximate solution for W(n). The expected value of W(n, m) equals

1 — [CQ(?’L,Tl,TQ)]m

E[W(n,m)|=c(nT,Ty) 1= (.7

+[eo(n, 1, To)]" W° (10)

with
a(n, T, Ty)=npp(n,T1)

CQ(?’l,T],TQ) =1- n [ﬁp(n, Tl) + % q(n,Tl)} — (1 — 1’1) MLT [q(n,TQ) +[)(1’1,T2)]

2

Equation (10) was used to plot the four curves in panel A of Figure 9.
At the steady state,

Tlﬁp(n’Tl)

WQC(n): o o
n {ﬁp(n,Tl) + E‘I(”sTl)} +(1—n) P [q(n,T2) + p(n,T3)]

If r; = 1, then the peak procedure becomes a simple FI T; s and Equation (11) reduces to
Equation (8).

Scalar property. To emphasize that W (n) depends on T; and To, we write it as W (n, Ty, Ty).
From Equation (11) and after using Equation (5) in both numerator and denominator, we get

Tlﬁﬁ(”a Tl)
o

n ﬁP("aTl)JrEQ("aTl) +(1—Vl)ﬁ[Q(”aTQHP(%T?)/k}

W (kn,kTy,kTy) =

Because q(n,T9)+p(n,Ts) /k = q(n,Ty) for large n, it follows that
w* (lm,kT1 ,kTQ) ~ W (n, T] , TQ)
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R(1). To approximate the response probability function, we obtain numerically the first value
of n such that W(n) > O and the subsequent value of n such that W(n) < ®. We refer to them as
n" and n~, respectively. Then,

P{R(t)=1}~P{[it]|=n" A[At]<n"}

- _ +_ (12)
zq)(” / 17#96)_(1)(” t lnu)o-)

Equation (12) was used to plot the functions in panel C of Figure 9.

Mixed-FI schedules
The procedure comprises an FI T; s and an FI Ty s (T;<Ty). The short FI occurs with
probability r;.
W(n). The expected value of W(n, m) equals
1— [CQ(TL,TI,TQ)]M

E[W(n,m)]=c(n,T1,Ty) 1—o(n,T1,1y)

+a(n, 11, 7)]"W° (13)

with
a(nT,Te)=npp(n,T1)+(1—n)Bp(nTz)

Cg(n,Tl,Tg) =1—7’1 |:ﬂ[)(n,T1)+ ‘u;‘;,]q(n,Tl)] —(1 —71) |:ﬁp(7l,T2)+ %q(n,Tg)} .

Equation (13) was used to plot the four curves in panel A of Figure 10.
At the steady state,

1 Bp(n,T1) +(1—n)pp(n,Ts) (14)

N T T =) B T )

In the cases r;=1 or r;=0, the mixed schedule becomes a simple FI schedule, and Equation
(14) reduces to Equation (8).

Scalar property. Equation (14) satisfies the scalar property, that is, W*(kn, kT;, kTs) = W*(n,
T, To).

R(1). To approximate the response probability function, we obtain numerically the first value
of n such that W(n) > 0O, the subsequent value of n such that W(n) < @, and the second value of
n such that W(n) > © again. We refer to them as n*, n, and no", respectively. Then,

P{R(t)=1}~P{[[2t]=n] A[A]<n" |V [it]=ny }
1 -1 F—1 (15)
z*l—(D(nl ; ,,u,a) —|—(D(n ; ,u,o—) —(D(n2 ; ,,u,a)

Equation (15) was used to plot the functions in panel C of Figure 10.

Temporal bisection

Two samples, S and L (L > S), are paired with two responses, Red and Green, respectively
(i.e., {S, L}=>{Red, Green}). We assume the simplest task—the two samples are equally likely and
each correct response is reinforced.
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WR(n) and WG(n). There are two vectors, one for each response. With respect to the steady
state values of WR(n) and WG(n), we could not solve the equations for the general case with o >
0 and > 0. Therefore, we studied the simpler case a= 0 and > 0. The end result is similar to
one of the four cases examined by Gibbon (1984; case ‘‘Scalar timing, likelihood ratio™’).

When extinction has no effect (a= 0), reinforcement of one response increases the link
connecting the active state to that response and decreases the link connecting the active state to
the competing response. An intuitive argument provides the key to the solution for WR™(n) and
WG™(n). If state n is more likely to be active at the end of the short than the long sample, then it
will become linked with the ‘“‘short’ response (i.e., Red)—every choice of Red will be rewarded,
which will strengthen WR(n) and weaken WG(n), which in turn will make it more likely to
choose Red in the future. This positive feedback loop will, on average, drive WR(n) to 1 and
WG(n) to 0. Panel A of Figure 11 illustrates the effect.

The steady state values of the two vectors will be either 0 or 1. The transition will occur
between the last state that is more likely to be active at the end of the Short sample and the first
state that is more likely to be active at the end of the Long sample. That is, the transition is the
solution of the equation

p(n,S) :ﬁ(”aL)

which may be approximated by the solution of the equation
() = 1N (o)
S S ,,U,O' - IJ IJ ,[1,0'

obtained, once again, using Equation (4) to approximate p(n,T). The solution is

ors\ (1 1 o\2 [L\/L+S
w=n(25) (5 32 () m(5) () (19

The bisection point or PSE is therefore approximately equal to

PSE~ F%—| (17)

To better understand the solution, we expand the square root in a Taylor series and retain
only its first two terms. After some rearrangement we obtain

2

LN (HM+ 1S (f) 1n<£>>

u L—S\u S
where HM is the harmonic mean of S and L. The predicted PSE is greater than the HM; its
deviation from the geometric mean is small for small ratios of L./S (e.g., 4) but increases with
that ratio.

P{*“Short”I'T}. Given the 0/1 distribution of the link strengths, the probability of a ‘‘Short”

response following a sample T-s long is the probability that the active state is n = n;. Simulations

showed that a more accurate result is obtained by adding to n; a small correction factor between
—1 and 1. That is,

nte EL

P{"Short"| T}~ p(n,T)=J " N(z,po)de. (18)
n=1 0

Scalar property. The scalar property states that P(*‘Short”|T, S, L)), the probability of choosing
“Short” given a T-s sample in a discrimination task with S and L training samples, equals
P(“‘Short”IKT, kS, kL)), the probability of choosing ‘‘Short’” given a kT-s sample in a discrimination
task with kS and kL training samples. The scalar property is apparent from Equation (16): If L and S
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are replaced by kL. and kS, respectively, then the new solution, no, equals kn; and, as a consequence,
the upper limit of the integral in Equation (18) remains constant.
Temporal Generalization

The task comprises a set of K samples, with duration Ty, Ts,..., Tk, occurring with frequencies
fi, fo,..., fx, and reinforced with probabilities ry, ro,...,rk.

W(n). Consider a trial with sample Tj. For W(n) to change the animal must a) pay attention
(probability ); b) be on state n at the end of the sample (probability p(n, Tj)); and c) respond
(probability W(n)). Assuming all these events occur, the amount of change in W(n) will depend
on the outcome, reinforcement with probability rj and extinction with probability 1 —r;. Putting
all events together yields,

E[W(n,m~+1)|W(n,m),T;]
= W(n,m)+mnp(n,T;) W(n,m) x (19)
x [rp(1—W(n,m))— (1—nr)oaW(n,m)]

Rearranging and adding the effect of all samples yields
E[W (nam-+1)| W (n,m)]
= W(nm)+7W (nm) 3 {fip(n.T5) % (20)
x [1iB— (1B + (1=1)) W(n.m)] }.
Letting
cl =ﬂZf=1ﬁﬁ(nﬂ})m
2= " fp(nT) (1-7),

gives, after some rearrangement,

E[W(n,m+1)]=(1+ncl)E[W(n,m)] —n(cl+ c2)E[W?(n,m)]

We approximate the steady state solution of W(n) by assuming that the variance of W(n) is
small such that E[W2(n,m)] =~ EQ[W(n,m)]. The result is

E[W(n,m+1)|={(1+nrcl) —n(cl+ 2)E[W(n,m)] }E[W (n,m)]
At the steady state,

_ cl
42

W= (n)

- ﬁZjK:lﬁ[?(n,T,-)r,- (21)
PEL T3+ S (nT5) (1)

The values of W*(n) depend on the sample durations Tj, their frequencies of occurrence f;,
and their reinforcement probabilities 1j.
To illustrate how Equation (21) is used, assume the conditions of Experiment 1 in Church and
Gibbon’s (1982) study. The only reinforced sample was T = 4s; it occurred on half of the trials

and all other eight samples, Ty, To,...,Tg, occurred on 1/16™ of the trials each. Then,
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Ep(na)+ Ep(n,T1)+ -+ +p(n, T3)]

R(t). At the end of a sample with duration t, the probability that a response occurs, P{R(t) = 1},
is determined as follows: With probability 1 — m the animal is not paying attention and therefore
it responds with probability C; with probability & it is paying attention and it responds with a
probability that depends on the link of the active state:

P{R()=1}=(1—m)C+n > _ pn.)W*(n) (22)

n>1

with W*(n) defined by Equation (21). Figure 12 shows plots of Equation (22) for various
experiments from Church and Gibbon’s (1982) study.

Scalar property. Assume that only one sample, T™, is reinforced and it is presented on half of the
trials. The other samples, Ty, Ts,..., Tg, are never reinforced and are equally likely to occur on the
other half of the trials. We introduce the notation W*(n, T*, T) to stress the dependence of
W”(n) on the samples, and we approximate the sum in Equation (22) by an integral, that is,

> pn)W(n, T+, T)~ r p(n)W= (n, 7%, T)dn,

n>1 0

Then, when all sample stimuli are multiplied by k, we obtain

P{R(kt) =1kT" ,kT}=(1—n)C+n Jm p(n k)W (n,k T kT dn.
0

We will show that
P{R(kt)=1|kT" ,kT}=P{R(t)=1|T",T} (23)

which is the scalar property. Using Equation (21),
* p(nkt) p(n,kTT)

Jw p(nkt)W(n kT ET)dn= J dn
0

O pnkTH) e S p(nkT))

Jj=1

for some constant ¢ = o/ (8f). Then, using Equation (6) we obtain

le)(n,kt)W(n,thkT)dn: h (]/k)‘b("/k’t)(]/")p(n/"’T+) dn
! e, T+>+rz (V)p("hT;)
Jj=
= N POz T+) dz (z=n/k)
’ p( T+) +r2p(z, )
= - P, )W (n, T ,T)dn;
JO

Equation (23) follows.



